13 research outputs found

    Wind turbine condition monitoring : technical and commercial challenges.

    Get PDF
    Deployment of larger scale wind turbine systems, particularly offshore, requires more organized operation and maintenance strategies to ensure systems are safe, profitable and cost-effective. Among existing maintenance strategies, reliability centred maintenance is regarded as best for offshore wind turbines, delivering corrective and proactive (i.e. preventive and predictive) maintenance techniques enabling wind turbines to achieve high availability and low cost of energy. Reliability centred maintenance analysis may demonstrate that an accurate and reliable condition monitoring system is one method to increase availability and decrease the cost of energy from wind. In recent years, efforts have been made to develop efficient and cost-effective condition monitoring techniques for wind turbines. A number of commercial wind turbine monitoring systems are available in the market, most based on existing techniques from other rotating machine industries. Other wind turbine condition monitoring reviews have been published but have not addressed the technical and commercial challenges, in particular, reliability and value for money. The purpose of this paper is to fill this gap and present the wind industry with a detailed analysis of the current practical challenges with existing wind turbine condition monitoring technology

    Novel Processing Algorithm to Improve Detectability of Disbonds in Adhesive Dissimilar Material Joints

    No full text
    Adhesively bonded dissimilar materials have attracted high interest in the aerospace and automotive industries due to their ability to provide superior structural characteristics and reduce the weight for energy savings. This work focuses on the improvement of disbond-type defect detectability using the immersion pulse-echo ultrasonic technique and an advanced post-processing algorithm. Despite the extensive work done for investigation, it is still challenging to locate such defects in dissimilar material joints due to the large differences in the properties of metals and composites as well as the multi-layered structure of the component. The objective of this work is to improve the detectability of defects in adhesively bonded aluminum and carbon fiber-reinforced plastic (CFRP) by the development of an advanced post-processing algorithm. It was determined that an analysis of multiple reflections has a high potential to improve detectability according to results received by inspection simulations and the evaluation of boundary characteristics. The impact of a highly influential parameter such as the sample curvature can be eliminated by the alignment of arrival time of signals reflected from the sample. The processing algorithm for the improvement of disbond detectability was developed based on time alignment followed by selection of the time intervals with a significant amplitude change of the signals reflected from defective and defect-free areas and shows significant improvement of disbond detectability

    Numerical Analysis of Guided Waves to Improve Damage Detection and Localization in Multilayered CFRP Panel

    No full text
    Multilayered carbon fiber-reinforced polymers (CFRP) are increasingly used in aircraft components because of their superior mechanical properties. However, composite materials are vulnerable to impact loads, resulting in delamination-type damage which, if unnoticed, could lead to catastrophic structural failure. The objective of this research was to investigate possibilities to improve damage detection and the localization using signal processing methods. Numerical modeling using the semi-analytical finite element (SAFE) method was performed to obtain guided wave dispersion curves and to perform modal analysis. From the modal analysis, A0 mode for inspection of the composite with delamination type defects was selected. From the numerical simulation, A0 mode interaction with delamination along the longitudinal direction was analyzed and the location of the defect was estimated by measuring the time of flight (ToF) of the signal using Hilbert transform (HT) and continuous wavelet transform (CWT). The CWT has shown better results in estimating the delamination location compared with HT. The depth of delamination was characterized in the frequency domain by comparing the amplitude of the A0 mode. Inverse fast Fourier transform (IFFT) is recommended to reconstruct the reflected and transmitted modes for better damage detection and to reduce the complexity of signal interpretation

    Effect of extrace llular matrix and dental pulp stem cells on bone regeneration with 3D printed PLA/HA composite scaffolds /

    No full text
    The demand for bone grafting procedures in various fields of medicine is increasing. Existing substitutes in clinical practice do not meet all the criteria required for an ideal bone scaffold, so new materials are being sought. This study evaluated bone regeneration using a critical-size Wistar rat’s calvarial defect model. 12 male and 12 female rats were evenly divided into 3 groups: 1. Negative and positive (Geistlich Bio-Oss®) controls; 2. polylactic acid (PLA) and PLA/hydroxyapatite (HA); 3. PLA/HA cellularised with dental pulp stem cells (DPSC) and PLA/HA extracellular matrix (ECM) scaffolds. PLA/HA filament was created using hot-melt extrusion equipment. All scaffolds were fabricated using a 3D printer. DPSC were isolated from the incisors of adult Wistar rats. The defects were evaluated by micro-computed tomography (µCT) and histology, 8 weeks after surgery. µCT revealed that the Bio-Oss group generated 1.49 mm3 and PLA/HA ECM 1.495 mm3 more bone volume than the negative control. Histology showed a statistically significant difference between negative control and both (Bio-Oss and PLA/HA ECM) groups in rats of both genders. Moreover, histology showed gender-specific differences in all experimental groups and a statistically significant difference between cellularised PLA/HA and PLA/HA ECM groups in female rats. Qualitative histology showed the pronounced inflammation reaction during biodegradation in the PLA group. In conclusion, the bone-forming ability was comparable between the Bio-Oss and PLA/HA ECM scaffolds. Further research is needed to analyse the effects of ECM and PLA/HA ratio on osteoregeneration
    corecore