193 research outputs found

    Structured fibrous carbon-based catalyst for continuous nitrate removal from natural water

    Full text link
    [EN] Bimetallic (Pd–Cu, Pd–Sn) nanoparticles supported on structured fibrous carbons (activated carbon fibers and carbon nanofibers grown on sintered metal fibers) were tested in nitrate removal of natural polluted water by hydrogen (a batch and continuous mode). Dependence of the activity/selectivity on catalyst chemical composition, promoter nature and metal particle size was studied. Sn-modified Pd nanoparticles showed higher N2 selectivity as compared to Cu-modified ones. The structured (Pd–Sn) nanoparticles supported on carbon nanofibers grown on Inconel sintered metal fibers demonstrated the best catalytic performance in an open flow reactor, providing optimal hydrodynamics properties.This work was carried out with the financial support of the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 226347.Yuranova, T.; Franch Martí, C.; Palomares Gimeno, AE.; García-Bordejé, E.; Kiwi-Minsker, L. (2012). Structured fibrous carbon-based catalyst for continuous nitrate removal from natural water. Applied Catalysis B: Environmental. 123-124:221-228. https://doi.org/10.1016/j.apcatb.2012.04.007S221228123-12

    Algorithmic Superactivation of Asymptotic Quantum Capacity of Zero-Capacity Quantum Channels

    Full text link
    The superactivation of zero-capacity quantum channels makes it possible to use two zero-capacity quantum channels with a positive joint capacity for their output. Currently, we have no theoretical background to describe all possible combinations of superactive zero-capacity channels; hence, there may be many other possible combinations. In practice, to discover such superactive zero-capacity channel-pairs, we must analyze an extremely large set of possible quantum states, channel models, and channel probabilities. There is still no extremely efficient algorithmic tool for this purpose. This paper shows an efficient algorithmical method of finding such combinations. Our method can be a very valuable tool for improving the results of fault-tolerant quantum computation and possible communication techniques over very noisy quantum channels.Comment: 35 pages, 17 figures, Journal-ref: Information Sciences (Elsevier, 2012), presented in part at Quantum Information Processing 2012 (QIP2012), v2: minor changes, v3: published version; Information Sciences, Elsevier, ISSN: 0020-0255; 201

    Evidence update on prevention of surgical site infection

    Get PDF
    Purpose of review: surgical site infection (SSI) is a common health care associated infection and complicates up to 10-20% of operations with considerable health care resources. Apart from the widely adopted use of appropriate hair removal, antibiotic prophylaxis, avoidance of hypothermia and peri-operative glycaemic control to reduce SSIs this review has considered new research and systematic reviews, and whether their findings should be included in guidelines. Recent findings: The efficacy of preoperative bathing/showering, antibiotic prophylaxis for clean surgery and perioperative oxygen supplementation to reduce the risk of SSI is still in doubt. By contrast, the use of 2% chlorhexidine in alcohol skin preparation, postoperative negative pressure wound therapy and antiseptic surgical dressings do show promise. Antimicrobial sutures in independent meta-analyses were found to reduce the risk of SSI after all classes of surgery (except dirty) whereas the use of wound guards, or diathermy skin incision (compared with scalpel incision), did not. Summary: The incidence of SSI after surgery is not falling. Based on this review of published trials and evidence-based systematic reviews some advances might be included into these care bundles. More research is needed together with improved compliance with care bundles

    Tratamiento de efluentes acuosos contaminados con compuestos organoclorados

    Get PDF
    [ES] Los compuestos organoclorados son un tipo de residuos que han adquirido especial relevancia en los últimos tiempos, debido a sus características tóxicas y peligrosas, tanto para el medio ambiente como para los seres humanos. Su especial peligrosidad ha potenciado la búsqueda de alternativas para su tratamiento en las distintas corrientes donde se presentan. En este artículo se describe la problemática real de este tipo de compuestos, se exponen los principales contaminantes y se muestra una visión general de las alternativas para la eliminación de estos organoclorados de corrientes acuosas, detallándose en profundidad una de las alternativas de eliminación consideradas: la hidrodecloración catalítica en fase acuosa.Padilla Vivas, B.; Díez Sanz, FV.; Ordóñez García, S. (2005). Tratamiento de efluentes acuosos contaminados con compuestos organoclorados. Ingeniería del agua. 12(4):361-375. https://doi.org/10.4995/ia.2005.2571OJS361375124Alejandre A., Medina F., Rodríguez X., Salagre P., Cesteros Y., Sueiras J. E. (2000). Cu/Ni/Al layered double hydroxides as precursors of catalysts for the wet air oxidation of phenol aqueous solutions. Appl. Catal. B. 30:195-207Ali M., Sreekrishnan T. R. (2001). Aquatic toxicity from pulp and paper mill effluents: a reviewAdvances in Environmental Research. 5:175-196Aramendia M. A., Boráu V., García I. M., Jiménez C., Marinas A., Marinas J. M., Urbano F. J. (2002). Liquid-phase hydrodehalogenation of substituted chlorobenzenes over palladium supported catalysts. Appl. Catal. B.43:71-79Araujo J. (1993). Naturaleza y Ecología en España. La Muerte Silenciosa. Ed. Círculo de LectoresATSDR. Agency for Toxic Substances and Disease Registry (2002). ToxFAQs™. EEUU.Brauer H. (1985). Biotechnology Fundamentals of Biochemical Engineering. Volumen 2.Buitrón G., González A., López-Martín L. M. (1998). Biodegradation of phenolic compounds by an acclimated activated sludge and isolated bacteria. Water Science and Technology. 37:371-378Cuevas M. A. (1998). Jornadas sobre la contaminación de las aguas subterráneas: un problema pendiente. Valencia.Cybulski, Trawczynski J. (2004). Catalytic wet air oxidation of phenol over platinum and ruthenium catalysts. Appl. Catal. B. 47:1-13Debellefontaine H., Foussard J. (1999). Wet air oxidation for the treatment of industrial wastes. Chemical aspects, reactor design and industrial applications in Europe. Waste management. 20:15Energy Research Group (2003). Centre for Ecological Sciences, Bangalore, India.EPA (1998). The inventory sources of chlorinated pollutants in the United States (EPA/600/P-98/002Aa).EPA (1999). Integrated Risk Information System on 1,2,4-Trichlorobenzene.EPA (2003). Ground water primer, EPA region 5 and Agricultural & Biological Engineering. Purdue UniversityEuro Chlor (2002). Chloroform in the environment; Marine Risk Assessments (www.eurochlor.org)Felis V., Bellefon C., Fouilloux P., Schweich D. (1998). Hydrodechlorination and hydrodearomatisation of monoaromatic chlorophenols into cyclohexanol on Ru/C catalysts applied to water depollution: influence of basic solvent and kinetics of the reactions. Appl. Catal. B: Environ. 20:91-100Fernández J., Maruthamuthu P., Kiwi J. (2004). Photobleaching and mineralization of Orange II by oxone and metal-ions involving Fenton-like chemistry under visible light. Journal of Photochemistry and Photobiology A: Chemistry. 161:185-192Fortuny A., Bengoa C., Font J., Castells F., Fabregat A. (1999). Water pollution abatement by catalytic wet air oxidation in a trickle bed reactor. Catalysis Today. 53:107-114Fritsch D., Kuhr K., Mackenzie K., Kopinke F. (2003). Hydrodechlorination of chloroorganics compounds in groundwater by Pd catalysts. Part 1. Development of polymer-based catalysts and membrane reactor tests. Catalysis Today. 82:105-118García Ara L. J. (2002). Actuaciones para la minimización del impacto del vertido de sustancias peligrosas en la industria química. (www.eic.es)Glaze W., Kenneke J., Ferry J. (1993). Chlorinated by-products from the TiO2-mediated photodegradation of trichloroethylene and tetrachloroethylene in water. Environ. Sci. Technol. 27:177-184Heinrichts B., Schoebrechts J. P., Pirard J. P. (2001). Palladium-silver sol-gel catalysts for selective hydrodechlorination of 1,2-dichloroethane into ethylene. Part III. Kinetics and reaction mechanism. Part IV. Deactivation mechanism and regeneration. Journal of Catalysis. 200:309-320Hoke J. B., Gramiccioni G. A., Balko E. N. (1992). Catalytic hydrodechlorination of chlorophenols. Appl. Catal. B: Environ. 1:285-296Janssen D. B., Oppentocht J. E., Poelarends G. J. (2001). Microbial dehalogenation. Environmental Biotechnology. 12:254-258Jechorek M., Wendlandt K. D., Beck M. (2003). Cometabolic degradation of chlorinated aromatic compounds. Journal of Biotechnology. 102:93-98Kargi F., Eker S. (2004, in press, corrected proof). Removal of 2,4-dichlorophenol and toxicity from synthetic wastewater in a rotating perforated tube biofilm reactor. Process BiochemistryKim Y. H., Carraway E. R. (2000). Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environ. Sci. Tec. 34:2014-2017Kopinke F., Mackenzie K., Köhler R. (2002). Catalytic hydrodechlorination of groundwater contaminants in water and in the gas phase using Pd/Al2O3. Appl. Catal B: Environ. 1349:1-10Kovenklioglu S., Cao Z., Farrauto R. J., Balko E. N. (1992). Direct catalytic hydrodechlorination of toxic organics in wastewater. AIChE J. 38:1003-1012Lin S. S., Chen C. L., Chang D. J., Chen C. & C. (2001). Catalytic wet air oxidation of phenol by various CeO2catalysts. Water research. 36:3009-3014Lomnicki S., Lichtenberger J., Xu Z., Waters M., Kosman J., Amiridis M. D. (2003). Catalytic oxidation of 2,4,6-trichlorophenol over vanadia/titania-based catalysts. Appl. Catal. B: Environ. 46:105-119López E., Ordóñez S., Díez F. V. (2003). Inhibition effects of organosulphur compounds on the hydrodechlorination of tetrachloroethylene. Catalysis Today. 84:121-127Lowry G. V., Reinhard M. (1999). Hydrodehalogenation of 1- to 3- carbon halogenated organic compounds in water using a palladium catalyst and hydrogen gas. Environ. Sci. Technology.33:1905-1910Lowry G. V., Reinhard M. (2000). Pd-catalyzed TCE dechlorination in groundwater: solute effects, biological control and oxidative catalyst regeneration. Environ. Sci. Technology. 34:3217-3223Malato S., Blanco J., Vidal A., Richter C. (2002). Photocatalysis with solar energy at a pilot-plant scale: an overview. Appl. Catal. B: Environ. 37:1-15Matatov-Meytal Y. I., Sheintuch M. (1998). Catalytic abatement of water pollutants. Ind. Eng. Chem. Res. 37:309-326Matatov-Meytal Y. I., Sheintuch M. (2000). Catalytic regeneration of chloroorganics-saturated activated carbon using hydrodechlorination. Ind. Eng. Chem.Res. 39:18-23Matatov-Meytal Y. I., Sheintuch M. (2002). Hydrotreating processes for catalytic abatement of water pollutants. Catalysis Today. 75:63-67Matheson L. J., Tratnyek P. G. (1994). Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technology. 28:2045-2053McNab W. W., Ruiz R., Reinhard M. (2000). In-situ destruction of chlorinated hydrocarbons in groundwater using catalytic reductive dehalogenation in a reactive well: testing and operational experiences. Environ. Sci. Technol. 34:149-153Ministerio de Medio Ambiente (2001). Medio Ambiente en España 2000. Ed. Direc. Gral. de Medio Ambiente.Muftikian R., Fernando Q., Korte N. (1995). A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water. Water Research. 29:2434-2439Ordóñez S., Díez F. V., Sastre H. (2003). Hydrodechlorination of tetrachloroethylene over Pd catalysts: influence of process conditions on catalyst performance and stability. Appl. Catal. B. 40:119-130Peres, J. A., Beltrán de Heredia J. (2004). Integrated Fenton's reagent coagulation/flocculation process for the treatment of cork processing wastewaters. Journal of Hazardous Materials. 107:115-121Perrone L., Prati L., Rossi M. (1997). Removal of chlorinated organic compounds from water by catalytic dehydrohalogenation. Appl. Catal. B: Environ. 15:241-246Portela J. R., Bernal J. L., Sanz E. N., Martínez de la Ossa E. (1997). Kinetics of wet air oxidation of phenol. Chem. Eng. J. 67:115-121Rivas F. J., Kolaczkowski S. T., Beltrán F. J., McLurgh D. (1998). Development of a model for the wet air oxidation of phenol based on a free radical mechanism. Chemical Engineering Science. 53:2575-2586Schmidt L. M., Delfino J. J., Preston J. F., St. Laurent G. (1999). Biodegradation of low aqueous concentration pentachlorophenol (PCP) contaminated groundwater. Chemosphere. 38:2897Schreier C. G., Reinhard M. (1995). Catalytic hydrodehalogenation of chlorinated ethylenes using palladium and hydrogen for the treatment of contaminated water. Chemosphere. 31:3475-3487Schüth C., Disser S., Schüth F., Reinhard M. (2000). Tailoring catalysts for hydrodechlorinating chlorinated hydrocarbon contaminants in groundwater. Appl. Catal. B: Environ. 28:147-152Schüth C., Reinhard M. (1998). Hydrodechlorination and hydrogenation of aromatic compounds over palladium on alumina in hydrogen-saturated water. Appl. Catal. B: Environ. 18:215-221Shindler Y., Matatov-Meytal Y. I., Sheintuch M. (2001). Wet hydrodechlorination of p-chlorophenol using Pd supported on an activated carbon cloth. Ind. Eng. Chem.Res. 40:3301-3308Sweeny K. H. (1981). The reductive treatment of industrial wastewaters. AIChE Symp.Series. 77:67-78Torrades F., Pérez M., Mansilla H. D., Peral J. (2003). Experimental design of Fenton and photo-Fenton reactions for the treatment of cellulose bleaching effluents. Chemosphere. 53:1211-1220Trabuco E., Ford P.C. (1999). Hydrodechlorination of 1,2-dichloroethane by rhodium catalysts under water gas shift reaction conditions. Journal of Molecular Catalysis A: Chemical. 148:1-7Young K., Daniel J., Lewis S. (2002). Kinetic and inhibition studies for the aerobic cometabolism of 1,1,1-trichloroethane, 1,1-dichloroethylene and 1,1-dichloroethane by a butane-grown mixed culture. Biotechnology and Bioengineering. 80:498-508Yuan G., Keane M.A. (2003a). Liquid phase catalytic hydrodechlorination of 2,4-dichlorophenol over carbon supported Pd: an evaluation of transport limitations Chemical Engineering Science. 58:257-267Yuan G., Keane M.A. (2003b). Liquid phase catalytic hydrodechlorination of chlorophenols at 273 K. Catalysis Communications. 4:195-201Yuan G., Keane M.A. (2003c). Catalyst deactivation during the liquid phase hydrodechlorination of 2,4-dichlorophenol over supported Pd: influence of the support. Catalysis Today. 88:27-3

    Transesterification of palm oil using KF and NaNO3 catalysts supported on spherical millimetric γ-Al2O3

    Get PDF
    The use of spherical millimetric gamma-alumina (γ-Al2O3) as a catalyst support for the production of biodiesel from palm oil is demonstrated. The catalyst support was produced using a dripping method, and KF and NaNO3 catalysts were loaded on the support using the impregnation method. X-ray diffraction (XRD) analysis showed the formation of Na2O and NaAlO2 phases on the NaNO3/γ-Al2O3 catalyst and the formation of K2O and KAlF4 on the KF/γ-Al2O3 catalyst, which were possibly the active sites for the transesterification reaction. The highest number and strength of basic sites generated from the solid phase reaction of the KF/γ-Al2O3 catalyst loaded with 0.24 g kF/g γ-Al2O3 and the NaNO3/γ-Al2O3 catalyst loaded with 0.30 g NaNO3/g γ-Al2O3 were confirmed by temperature programmed desorption of CO2 (CO2-TPD) analysis. The nitrogen adsorption–desorption isotherms also revealed a mesoporous structure of the catalysts. The biodiesel yield was comparable to that produced from smaller catalysts, and this result indicated the potential of the macrospherical catalysts

    Studies on design of heterogeneous catalysts for biodiesel production

    Get PDF
    The production of biodiesel is gaining momentum with the ever increasing demand of the fuel. Presently, limited literature is available with respect to well designed solid heterogeneous catalyst for biodiesel production considering all the characteristics, process and operation parameters. Hence, a study was conducted to design effective heterogeneous catalyst for biodiesel production. Further, the significant impact of different catalysts, different feed stock, various reaction conditions such as temperature, methanol oil molar ratio, catalyst concentrations and stability/inactivation of the catalysts, are detailed out for transesterification process of biodiesel production. Based on the studies it can be concluded that well designed heterogeneous catalyst can yield high throughput of biodiesel

    Telas de carbón activado: generalidades y aplicaciones

    No full text
    corecore