442 research outputs found

    Quantum Information Transmission over a Partially Degradable Channel

    Get PDF
    We investigate a quantum coding for quantum communication over a PD (partially degradable) degradable quantum channel. For a PD channel, the degraded environment state can be expressed from the channel output state up to a degrading map. PD channels can be restricted to the set of optical channels which allows for the parties to exploit the benefits in experimental quantum communications. We show that for a PD channel, the partial degradability property leads to higher quantum data rates in comparison to those of a degradable channel. The PD property is particular convenient for quantum communications and allows one to implement the experimental quantum protocols with higher performance. We define a coding scheme for PD-channels and give the achievable rates of quantum communication.Comment: 7 pages, 2 figures, Journal-ref: IEEE Acces

    Entanglement Availability Differentiation Service for the Quantum Internet

    Full text link
    A fundamental concept of the quantum Internet is quantum entanglement. In a quantum Internet scenario where the legal users of the network have different priority levels or where a differentiation of entanglement availability between the users is a necessity, an entanglement availability service is essential. Here we define the entanglement availability differentiation (EAD) service for the quantum Internet. In the proposed EAD framework, the differentiation is either made in the amount of entanglement with respect to the relative entropy of entanglement associated with the legal users, or in the time domain with respect to the amount of time that is required to establish a maximally entangled system between the legal parties. The framework provides an efficient and easily-implementable solution for the differentiation of entanglement availability in experimental quantum networking scenarios.Comment: 18 pages, Journal-ref: Scientific Report
    • …
    corecore