221 research outputs found

    Cytogenetic Characterization of the TM4 Mouse Sertoli Cell Line. II. Chromosome Microdissection, FISH, Scanning Electron Microscopy, and Confocal Laser Scanning Microscopy

    Get PDF
    The chromosomes and interphase cell nuclei of the permanent mouse Sertoli cell line TM4 were examined by chromosome microdissection, FISH, scanning electron microscopy, and confocal laser scanning microscopy. The already known marker chromosomes m1-m5 were confirmed, and 2 new large marker chromosomes m6 and m7 were characterized. The minute heterochromatic marker chromosomes m4 and m5 were microdissected and their DNA amplified by DOP-PCR. FISH of this DNA probe on TM4 metaphase chromosomes demonstrated that the m4 and m5 marker chromosomes have derived from the centromeric regions of normal telocentric mouse chromosomes. Ectopic pairing of the m4 and m5 marker chromosomes with the centromeric region of any of the other chromosomes (centromeric associations) was apparent in ∼60% of the metaphases. Scanning electron microscopy revealed DNA-protein bridges connecting the centromeric regions of normal chromosomes and the associated m4 and m5 marker chromosomes. Interphase cell nuclei of TM4 Sertoli cells did not exhibit the characteristic morphology of Sertoli cells in the testes of adult mice as shown by fluorescence microscopy and confocal laser scanning microscopy

    Distribution of chromosome 18 and X centric heterochromatin in the interphase nucleus of cultured human cells

    Get PDF
    In situ hybridization of human chromosome 18 and X-specific alphoid DNA-probes was performed in combination with three dimensional (3D) and two dimensional (2D) image analysis to study the interphase distribution of the centric heterochromatin (18c and Xc) of these chromosomes in cultured human cells. 3D analyses of 18c targets using confocal laser scanning microscopy indicated a nonrandom disposition in 73 amniotic fluid cell nuclei. The shape of these nuclei resembled rather flat cylinders or ellipsoids targets were preferentially arranged in a domain around the nuclear center, but close to or associated with the nuclear envelope. Within this domain, however, positionings of the two targets occurred independently from each other, i.e., the two targets were observed with similar frequencies at the same (upper or lower) side of the nuclear envelope as those on opposite sides. This result strongly argues against any permanent homologous association of 18c. A 2D analytical approach was used for the rapid evaluation of 18c positions in over 4000 interphase nuclei from normal male and female individuals, as well as individuals with trisomy 18 and Bloom's syndrome. In addition to epithelially derived amniotic fluid cells, investigated cell types included in vitro cultivated fibroblastoid cells established from fetal lung tissue and skin-derived fibroblasts. In agreement with the above 3D observations 18c targets were found significantly closer (P < 0.01) to the center of the 2D nuclear image (CNI) and to each other in all these cultures compared to a random distribution derived from corresponding ellipsoid or cylinder model nuclei. For comparison, a chromosome X-specific alphoid DNA probe was used to investigate the 2D distribution of chromosome X centric heterochromatin in the same cell types. Two dimensional Xc-Xc and Xc-CNI distances fit a random distribution in diploid normal and Bloom's syndrome nuclei, as well as in nuclei with trisomy X. The different distributions of 18c and Xc targets were confirmed by the simultaneous staining of these targets in different colors within individual nuclei using a double in situ hybridization approach

    FISH in analysis of gamma ray-induced micronuclei formation in barley

    Get PDF
    A micronucleus test in combination with fluorescent in situ hybridization (FISH) using telomere-, centromere-specific probes and 5S and 25S rDNA was used for a detailed analysis of the effects of gamma ray irradiation on the root tip meristem cells of barley, Hordeum vulgare (2n = 14). FISH with four DNA probes was used to examine the involvement of specific chromosomes or chromosome fragments in gamma ray-induced micronuclei formation and then to explain their origin. Additionally, a comparison of the possible origin of the micronuclei induced by physical and chemical treatment: maleic hydrazide (MH) and N-nitroso-N-methylurea (MNU) was done. The micronuclei induced by gamma ray could originate from acentric fragments after chromosome breakage or from whole lagging chromosomes as a result of a dysfunction of the mitotic apparatus. No micronuclei containing only centromeric signals were found. An application of rDNA as probes allowed it to be stated that 5S rDNA–bearing chromosomes are involved in micronuclei formation more often than NOR chromosomes. This work allowed the origin of physically- and chemically-induced micronuclei in barley cells to be compared: the origin of micronuclei was most often from terminal fragments. FISH confirmed its usefulness in the characterization of micronuclei content, as well as in understanding and comparing the mechanisms of the actions of mutagens applied in plant genotoxicity

    Genotyping of 73 UM-SCC head and neck squamous cell carcinoma cell lines

    Full text link
    Background. We established multiple University of Michigan Squamous Cell Carcinoma (UM-SCC) cell lines. With time, these have been distributed to other labs all over the world. Recent scientific discussions have noted the need to confirm the origin and identity of cell lines in grant proposals and journal articles. We genotyped the UM-SCC cell lines in our collection to confirm their unique identity. Method. Early-passage UM-SCC cell lines were genotyped and photographed. Results . Thus far, 73 unique head and neck UM-SCC cell lines (from 65 donors, including 21 lines from 17 females) were genotyped. In 7 cases, separate cell lines were established from the same donor. Conclusions. These results will be posted on the UM Head and Neck SPORE Tissue Core website for other investigators to confirm that the UM-SCC cells used in their laboratories have the correct features. Publications using UM-SCC cell lines should confirm the genotype. © 2009 Wiley Periodicals, Inc. Head Neck, 2010Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69163/1/21198_ftp.pd

    Sub-lethal concentrations of CdCl2 disrupt cell migration and cytoskeletal proteins in cultured mouse TM4 Sertoli cells

    Get PDF
    The aims of this study were to examine the effects of CdCl2 on the viability, migration and cytoskeleton of cultured mouse TM4 Sertoli cells. Time- and concentration-dependent changes were exhibited by the cells but 1 µM CdCl2 was sub-cytotoxic at all time-points. Exposure to 1 and 12 µM CdCl2 for 4 h resulted in disruption of the leading edge, as determined by chemical staining. Cell migration was inhibited by both 1 and 12 µM CdCl2 in a scratch assay monitored by live cell imaging, although exposure to the higher concentration was associated with cell death. Western blotting and immunofluorescence staining indicated that CdCl2 caused a concentration dependent reduction in actin and tubulin levels. Exposure to Cd2+ also resulted in significant changes in the levels and/or phosphorylation status of the microtubule and microfilament destabilising proteins cofilin and stathmin, suggesting disruption of cytoskeletal dynamics. Given that 1-12 µM Cd2+ is attainable in vivo, our findings are consistent with the possibility that Cd2+ induced impairment of testicular development and reproductive health may involve a combination of reduced Sertoli cell migration and impaired Sertoli cell viability depending on the timing, level and duration of exposure

    DNMT3L Is a Regulator of X Chromosome Compaction and Post-Meiotic Gene Transcription

    Get PDF
    Previous studies on the epigenetic regulator DNA methyltransferase 3-Like (DNMT3L), have demonstrated it is an essential regulator of paternal imprinting and early male meiosis. Dnmt3L is also a paternal effect gene, i.e., wild type offspring of heterozygous mutant sires display abnormal phenotypes suggesting the inheritance of aberrant epigenetic marks on the paternal chromosomes. In order to reveal the mechanisms underlying these paternal effects, we have assessed X chromosome meiotic compaction, XY chromosome aneuploidy rates and global transcription in meiotic and haploid germ cells from male mice heterozygous for Dnmt3L. XY bodies from Dnmt3L heterozygous males were significantly longer than those from wild types, and were associated with a three-fold increase in XY bearing sperm. Loss of a Dnmt3L allele resulted in deregulated expression of a large number of both X-linked and autosomal genes within meiotic cells, but more prominently in haploid germ cells. Data demonstrate that similar to embryonic stem cells, DNMT3L is involved in an auto-regulatory loop in germ cells wherein the loss of a Dnmt3L allele resulted in increased transcription from the remaining wild type allele. In contrast, however, within round spermatids, this auto-regulatory loop incorporated the alternative non-coding alternative transcripts. Consistent with the mRNA data, we have localized DNMT3L within spermatids and sperm and shown that the loss of a Dnmt3L allele results in a decreased DNMT3L content within sperm. These data demonstrate previously unrecognised roles for DNMT3L in late meiosis and in the transcriptional regulation of meiotic and post-meiotic germ cells. These data provide a potential mechanism for some cases of human Klinefelter's and Turner's syndromes

    Targeting the epigenome: effects of epigenetic treatment strategies on genomic stability in healthy human cells

    Get PDF
    Epigenetic treatment concepts have long been ascribed as being tumour-selective. Over the last decade, it has become evident that epigenetic mechanisms are essential for a wide range of intracellular functions in healthy cells as well. Evaluation of possible side-effects and their underlying mechanisms in healthy human cells is necessary in order to improve not only patient safety, but also to support future drug development. Since epigenetic regulation directly interacts with genomic and chromosomal packaging density, increasing genomic instability may be a result subsequent to drug-induced epigenetic modifications. This review highlights past and current research efforts on the influence of epigenetic modification on genomic stability in healthy human cells

    Neuronal Aneuploidy in Health and Disease: A Cytomic Approach to Understand the Molecular Individuality of Neurons

    Get PDF
    Structural variation in the human genome is likely to be an important mechanism for neuronal diversity and brain disease. A combination of multiple different forms of aneuploid cells due to loss or gain of whole chromosomes giving rise to cellular diversity at the genomic level have been described in neurons of the normal and diseased adult human brain. Here, we describe recent advances in molecular neuropathology based on the combination of slide-based cytometry with molecular biological techniques that will contribute to the understanding of genetic neuronal heterogeneity in the CNS and its potential impact on Alzheimer's disease and age-related disorders

    Normal and Cut-Off Values of the Cytokinesis-Block Micronucleus Assay on Peripheral Blood Lymphocytes in the Croatian General Population

    Get PDF
    Mikronukleus (MN) test na limfocitima periferne krvi jedna je od najvažnijih metoda koje se primjenjuju u citogenetičkom nadzoru. Osnovni preduvjet za primjenu nekog testa u svrhu nadzora profesionalno izloženih populacija jest poznavanje normalnih vrijednosti promatranoga biološkog pokazatelja (biomarkera) u kontrolnoj populaciji. Baze podataka na razini opće populacije moraju se redovito obnavljati novim podacima. Cilj ovog istraživanja bio je utvrditi normalne i granične vrijednosti MN-testa na limfocitima periferne krvi 200 zdravih ispitanika obaju spolova iz opće populacije Republike Hrvatske te ispitati koji čimbenici pridonose spontanom nastanku MN. Na razini istražene populacije utvrđeno je prosječno (6,90±3,32) MN (medijan 7 MN), dok je raspon pojedinačnih vrijednosti iznosio 0 do 18 MN u 1000 binuklearnih stanica. Gornja granična vrijednost dobivena izračunavanjem 95. percentila za cjelokupnu promatranu populaciju iznosi 12,5 MN na 1000 limfocita. Utvrđeno je da na spontani nastanak MN utječu spol, dob i navika pušenja. Žene u prosjeku imaju više vrijednosti svih parametara MN-testa od muškaraca, a u njih je bio i naglašeniji porast vrijednosti citogenetičkog nalaza zbog navike pušenja. Kako su literaturni podaci o utjecaju pušenja cigareta na nastanak MN kontradiktorni, planiran je nastavak istraživanja radi razjašnjavanja utjecaja dnevno utrošenog broja cigareta i ukupnog trajanja pušačkog staža na vrijednosti parametara MN-testa. Usporedba rezultata s literaturnim podacima potvrdila je da su dobivene vrijednosti u skladu s vrijednostima MN-testa zabilježenim na općoj populaciji u drugim svjetskim laboratorijima. Normalne i granične vrijednosti MN-testa utvrđene u ovome istraživanju poslužit će kao osnova za usporedbu i tumačenje nalaza MN-testa u ispitanika izloženih populacija te daljnju nadogradnju laboratorijske baze podataka.The cytokinesis-block micronucleus (CBMN) assay on peripheral blood lymphocytes is one of the most important methods employed in cytogenetic biomonitoring. For the purposes of biological dosimetry, it is important to kno the spontaneous frequency of a biomarker and its normal values in general population. These values are used for population databases, which should be updated regularly. In this study, MN levels were investigated in cytokinesis-blocked lymphocytes of 200 healthy male and female blood donors selected at random from the general population of Croatia. The aim was to assess the variability and determine possible infl uences of external and/or internal factors on the background levels of MN and to establish the cut-off value for the CBMN assay. The background frequency of MN was (6.90±3.32) MN (median 7 MN) and the range was 0 to 18 MN per 1000 binuclear lymphocytes. The cut-off value, which corresponds to 95th percentile of the distribution of 200 individual values, was 12.5 MN. Spontaneous formation of MN was infl uenced by sex, age, and smoking. Women had higher MN levels than men. However, only age and smoking signifi cantly increased the values of all parameters evaluated by the CBMN assay. Since the existing literature data on smoking-related formation of MN are contradictory, we will continue these investigations to resolve how the number of cigarettes smoked per day and the duration of smoking in years infl uence the results of the CBMN assay. Our results are consistent with the background MN frequencies reported by other cytogenetic laboratories worldwide. Normal and cut-off values estimated in this study will be used to update the current general population data and as reference for occupationally or accidental exposure
    corecore