576 research outputs found

    Anxious and Oppositional Behavior Factors in a Community Sample of Youth with Selective Mutism

    Full text link
    Selective mutism (SM) is a childhood disorder characterized by a failure to speak in certain situations (e.g., school, social situations; APA, 2013). SM is best assessed using a comprehensive multimodal strategy (Dow et al., 1995; Krysanski, 2003; Viana et al., 2009; Wong, 2010), including parent reports of a child’s behavior. One commonly used parent report measure is the Child Behavior Checklist (CBCL; Achenbach & Rescorla, 2001). The purpose of the present study was to identify specific CBCL items that may help substantiate SM subtypes in children. The study used confirmatory factor analysis to determine whether a two-factor structure (anxious and oppositional behavior) identified in past studies (Diliberto & Kearney, 2016; 2018) fits a new sample of children with SM. The study also examined whether factor scores from past studies (Diliberto & Kearney, 2016; 2018) and the present study predict subscale scores on the Selective Mutism Questionnaire (SMQ; Bergman et al., 2008), a measure of SM symptom severity. CBCL-based profiles may help clinicians quickly and accurately assess for SM subtypes in children. The study results revealed that a modified two-factor structure fit a new sample of children with SM and that the anxious factor score predicted SMQ subscale scores. The study results also revealed that the oppositional factor score did not predict SMQ subscale scores. Additional analyses were conducted to determine whether factor scores predict SMQ subscale scores across gender, age group, and median cutoff scores. Finally, clinical implications and study limitations were explored, and recommendations were made for future research

    Src mediates cytokine-stimulated gene expression in airway myocytes through ERK MAPK

    Get PDF
    The p38 and extracellular signal-regulated kinases (ERK) mitogen-activated protein kinases (MAPK) participate in cytokine-stimulated inflammatory gene expression in airway smooth muscle cells. The following study was undertaken to determine whether Src tyrosine kinases are signaling intermediaries upstream of cytokine-stimulated MAPK activation and gene expression. Treating human airway myocytes with interleukin (IL)-1β, tumor necrosis factor (TNF) α and interferon (IFN) γ caused a rapid 1.8-fold increase in Src family tyrosine kinase activity within 1 minute that remained 2.3 to 2.7 fold above basal conditions for 15 minutes. This activity was blocked by addition of 30 μM PP1, a pyrimidine inhibitor specific for Src family tyrosine kinases, in immune-complex assays to confirm that this stimulus activates Src tyrosine kinase. Addition of PP1 also blocked cytokine-stimulated expression of IL-1β, IL-6 and IL-8, while decreasing phosphorylation of ERK, but not p38 MAPK. Since this inflammatory stimulus may activate additional inflammatory signaling pathways downstream of Src, we tested the effects of PP1 on phosphorylation of signal transducers and activators of transcription (STAT). PP1 had no effect on cytokine-stimulated STAT 1 or STAT 3 phosphorylation. These results demonstrate that Src tyrosine kinases participate in the regulation of IL-1β, IL-6 and IL-8 expression and that these effects of Src are mediated through activation of ERK MAPK and not p38 MAPK or STAT1/STAT3 phosphorylation

    Effect of bending test on the performance of CdTe solar cells on flexible ultra-thin glass produced by MOCVD

    Get PDF
    The development of lightweight and flexible solar modules is highly desirable for high specific power applications, building integrated photovoltaics, unmanned aerial vehicles and space. Flexible metallic and polyimide foils are frequently used, but in this work an alternative substrate with attractive properties, ultra-thin glass (UTG) has been employed. CdTe solar cells with average efficiency reaching 14.7% AM1.5G efficiency have been produced on UTG of 100 μm thickness. Little has been reported on the effects on PV performance when flexed, so we investigated the effects on J-V parameters when the measurements were performed in 40 mm and 32 mm bend radius, and in a planar state before and after the bend curvature was applied. The flat J-V measurements after 32 mm bending test showed some improvement in efficiency, Voc and FF, with values higher than the first measurement in a planar state. In addition, two CdTe solar cells with identical initial performance were subjected to 32 mm static bending test for 168 hours, the results showed excellent uniformity and stability and no significant variation on J-V parameters was observed. External quantum efficiency and capacitance voltage measurements were performed and showed no significant change in spectral response or carrier concentration. Residual stress analysis showed that no additional strain was induced within the film after the bending test and that the overall strain was low. This has demonstrated the feasibility of using CdTe solar cells on UTG in new applications, when a curved module is required without compromising performance

    Proinflammatory and Th2 Cytokines Regulate the High Affinity IgE Receptor (FcεRI) and IgE-Dependant Activation of Human Airway Smooth Muscle Cells

    Get PDF
    BACKGROUND:The high affinity IgE receptor (FcepsilonRI) is a crucial structure for IgE-mediated allergic reactions. We have previously demonstrated that human airway smooth muscle (ASM) cells express the tetrameric (alphabetagamma2) FcepsilonRI, and its activation leads to marked transient increases in intracellular Ca(2+) concentration, release of Th-2 cytokines and eotaxin-1/CCL11. Therefore, it was of utmost importance to delineate the factors regulating the expression of FcepsilonRI in human (ASM) cells. METHODOLOGY/PRINCIPAL FINDINGS:Incubation of human bronchial and tracheal smooth muscle (B/TSM) cells with TNF-alpha, IL-1beta or IL-4 resulted in a significant increase in FcepsilonRI-alpha chain mRNA expression (p<0.05); and TNF-alpha, IL-4 enhanced the FcepsilonRI-alpha protein expression compared to the unstimulated control at 24, 72 hrs after stimulation. Interestingly, among all other cytokines, only TNF-alpha upregulated the FcepsilonRI-gamma mRNA expression. FcepsilonRI-gamma protein expression remained unchanged despite the nature of stimulation. Of note, as a functional consequence of FcepsilonRI upregulation, TNF-alpha pre-sensitization of B/TSM potentially augmented the CC (eotaxin-1/CCL11 and RANTES/CCL5, but not TARC/CCL17) and CXC (IL-8/CXCL8, IP-10/CXCL10) chemokines release following IgE stimulation (p<0.05, n = 3). Furthermore, IgE sensitization of B/TSM cells significantly enhanced the transcription of selective CC and CXC chemokines at promoter level compared to control, which was abolished by Lentivirus-mediated silencing of Syk expression. CONCLUSIONS/SIGNIFICANCE:Our data depict a critical role of B/TSM in allergic airway inflammation via potentially novel mechanisms involving proinflammatory, Th2 cytokines and IgE/FcepsilonRI complex

    Calcium Channel Blockers, More than Diuretics, Enhance Vascular Protective Effects of Angiotensin Receptor Blockers in Salt-Loaded Hypertensive Rats

    Get PDF
    The combination therapy of an angiotensin receptor blocker (ARB) with a calcium channel blocker (CCB) or with a diuretic is favorably recommended for the treatment of hypertension. However, the difference between these two combination therapies is unclear. The present work was undertaken to examine the possible difference between the two combination therapies in vascular protection. Salt-loaded stroke-prone spontaneously hypertensive rats (SHRSP) were divided into 6 groups, and they were orally administered (1) vehicle, (2) olmesartan, an ARB, (3) azelnidipine, a CCB, (4) hydrochlorothiazide, a diuretic, (5) olmesartan combined with azelnidipine, or (6) olmesartan combined with hydrochlorothiazide. Olmesartan combined with either azelnidipine or hydrochlorothiazide ameliorated vascular endothelial dysfunction and remodeling in SHRSP more than did monotherapy with either agent. However, despite a comparable blood pressure lowering effect between the two treatments, azelnidipine enhanced the amelioration of vascular endothelial dysfunction and remodeling by olmesartan to a greater extent than did hydrochlorothiazide in salt-loaded SHRSP. The increased enhancement by azelnidipine of olmesartan-induced vascular protection than by hydrochlorothiazide was associated with a greater amelioration of vascular nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation, superoxide, mitogen-activated protein kinase activation, and with a greater activation of the Akt/endothelial nitric oxide synthase (eNOS) pathway. These results provided the first evidence that a CCB potentiates the vascular protective effects of an ARB in salt-sensitive hypertension, compared with a diuretic, and provided a novel rationale explaining the benefit of the combination therapy with an ARB and a CCB

    Nogo-B regulates migration and contraction of airway smooth muscle cells by decreasing ARPC 2/3 and increasing MYL-9 expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Abnormal proliferation, apoptosis, migration and contraction of airway smooth muscle (ASM) cells in airway remodeling in asthma are basically excessive repair responses to a network of inflammatory mediators such as PDGF, but the mechanisms of such responses remain unclear. Nogo-B, a member of the reticulum family 4(RTN4), is known to play a key role in arteriogenesis and tissue repair. Further studies are needed to elucidate the role of Nogo-B in airway smooth muscle abnormalities.</p> <p>Methods</p> <p>A mouse model of chronic asthma was established by repeated OVA inhalation and subjected to Nogo-B expression analysis using immunohistochemistry and Western Blotting. Then, primary human bronchial smooth muscle cells (HBSMCs) were cultured <it>in vitro </it>and a siRNA interference was performed to knockdown the expression of Nogo-B in the cells. The effects of Nogo-B inhibition on PDGF-induced HBSMCs proliferation, migration and contraction were evaluated. Finally, a proteomic analysis was conducted to unveil the underlying mechanisms responsible for the function of Nogo-B.</p> <p>Results</p> <p>Total Nogo-B expression was approximately 3.08-fold lower in chronic asthmatic mice compared to naïve mice, which was obvious in the smooth muscle layer of the airways. Interference of Nogo-B expression by siRNA resulted nearly 96% reduction in mRNA in cultured HBSMCs. In addition, knockdown of Nogo-B using specific siRNA significantly decreased PDGF-induced migration of HBSMCs by 2.3-fold, and increased the cellular contraction by 16% compared to negative controls, but had limited effects on PDGF-induced proliferation. Furthermore, using proteomic analysis, we demonstrate that the expression of actin related protein 2/3 complex subunit 5 (ARPC 2/3) decreased and, myosin regulatory light chain 9 isoform a (MYL-9) increased after Nogo-B knockdown.</p> <p>Conclusions</p> <p>These data define a novel role for Nogo-B in airway remodeling in chronic asthma. Endogenous Nogo-B, which may exert its effects through ARPC 2/3 and MYL-9, is necessary for the migration and contraction of airway smooth muscle cells.</p

    Sub-lethal concentrations of CdCl2 disrupt cell migration and cytoskeletal proteins in cultured mouse TM4 Sertoli cells

    Get PDF
    The aims of this study were to examine the effects of CdCl2 on the viability, migration and cytoskeleton of cultured mouse TM4 Sertoli cells. Time- and concentration-dependent changes were exhibited by the cells but 1 µM CdCl2 was sub-cytotoxic at all time-points. Exposure to 1 and 12 µM CdCl2 for 4 h resulted in disruption of the leading edge, as determined by chemical staining. Cell migration was inhibited by both 1 and 12 µM CdCl2 in a scratch assay monitored by live cell imaging, although exposure to the higher concentration was associated with cell death. Western blotting and immunofluorescence staining indicated that CdCl2 caused a concentration dependent reduction in actin and tubulin levels. Exposure to Cd2+ also resulted in significant changes in the levels and/or phosphorylation status of the microtubule and microfilament destabilising proteins cofilin and stathmin, suggesting disruption of cytoskeletal dynamics. Given that 1-12 µM Cd2+ is attainable in vivo, our findings are consistent with the possibility that Cd2+ induced impairment of testicular development and reproductive health may involve a combination of reduced Sertoli cell migration and impaired Sertoli cell viability depending on the timing, level and duration of exposure

    Activation of store-operated calcium entry in airway smooth muscle cells: insight from a mathematical model

    Get PDF
    Intracellular dynamics of airway smooth muscle cells (ASMC) mediate ASMC contraction and proliferation, and thus play a key role in airway hyper-responsiveness (AHR) and remodelling in asthma. We evaluate the importance of store-operated entry (SOCE) in these dynamics by constructing a mathematical model of ASMC signaling based on experimental data from lung slices. The model confirms that SOCE is elicited upon sufficient depletion of the sarcoplasmic reticulum (SR), while receptor-operated entry (ROCE) is inhibited in such conditions. It also shows that SOCE can sustain agonist-induced oscillations in the absence of other influx. SOCE up-regulation may thus contribute to AHR by increasing the oscillation frequency that in turn regulates ASMC contraction. The model also provides an explanation for the failure of the SERCA pump blocker CPA to clamp the cytosolic of ASMC in lung slices, by showing that CPA is unable to maintain the SR empty of . This prediction is confirmed by experimental data from mouse lung slices, and strongly suggests that CPA only partially inhibits SERCA in ASMC

    Genetic Interactions between Chromosomes 11 and 18 Contribute to Airway Hyperresponsiveness in Mice

    Get PDF
    We used two-dimensional quantitative trait locus analysis to identify interacting genetic loci that contribute to the native airway constrictor hyperresponsiveness to methacholine that characterizes A/J mice, relative to C57BL/6J mice. We quantified airway responsiveness to intravenous methacholine boluses in eighty-eight (C57BL/6J X A/J) F2 and twenty-seven (A/J X C57BL/6J) F2 mice as well as ten A/J mice and six C57BL/6J mice; all studies were performed in male mice. Mice were genotyped at 384 SNP markers, and from these data two-QTL analyses disclosed one pair of interacting loci on chromosomes 11 and 18; the homozygous A/J genotype at each locus constituted the genetic interaction linked to the hyperresponsive A/J phenotype. Bioinformatic network analysis of potential interactions among proteins encoded by genes in the linked regions disclosed two high priority subnetworks - Myl7, Rock1, Limk2; and Npc1, Npc1l1. Evidence in the literature supports the possibility that either or both networks could contribute to the regulation of airway constrictor responsiveness. Together, these results should stimulate evaluation of the genetic contribution of these networks in the regulation of airway responsiveness in humans
    • …
    corecore