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Abstract 

The aims of this study were to examine the effects of CdCl2 on the viability, migration and 
cytoskeleton of cultured mouse TM4 Sertoli cells. Time- and concentration-dependent 
changes were exhibited by the cells but 1 µM CdCl2 was sub-cytotoxic at all time-points. 
Exposure to 1 and 12 µM CdCl2 for 4 h resulted in disruption of the leading edge, as 
determined by chemical staining. Cell migration was inhibited by both  1 and 12 µM CdCl2 in 
a scratch assay monitored by live cell imaging, although exposure to the higher concentration 
was associated with cell death. Western blotting and immunofluorescence staining indicated 
that CdCl2 caused a concentration dependent reduction in actin and tubulin levels. Exposure 
to Cd2+ also resulted in significant changes in the levels and/or phosphorylation status of the 
microtubule and microfilament destabilising proteins cofilin and stathmin, suggesting 
disruption of cytoskeletal dynamics. Given that 1-12 µM Cd2+ is attainable in vivo, our 
findings are consistent with the possibility that Cd2+ induced impairment of  testicular 
development and reproductive  health may involve a combination of reduced Sertoli cell 
migration and impaired Sertoli cell viability depending on the timing, level and duration of 
exposure. 

 

Key words: Cadmium chloride; Sertoli cells; reproductive toxicity; cytoskeleton; cell 

migration; testicular development. 

 

Abbreviations: AIDA, Advanced Image Data Analyser; BSA, bovine serum albumin; CdCl2, 

cadmium chloride; CFSE, carboxyfluorescein diacetate succinimidyl ester; DAPI, 4',6-

diamidino-2-phenylindole; DMSO, dimethyl sulfoxide; FITC, fluorescein isothiocyanate; H 

and E, haematoxylin and eosin; IC50, inhibiting concentration (50 %); LDH, lactate 

dehydrogenase; MFs, microfilaments; MTs, microtubules; MTT, 3-[4,5-dimethylthiazol-2-

yl]-2,5-diphenyltetrazolium bromide; PBS, phosphate buffered saline; SDS, sodium dodecyl 

sulphate; TBS, Tris-buffered saline; 5-FU, 5-fluorouracil 
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1. INTRODUCTION 

Heavy metals are environmental pollutants of great concern because of their persistent 

occurrence, arising from increasing industrialisation and other anthropogenic activities 

(Borrego et al., 2002). A primary concern regarding exposure to heavy metals centres on their 

deleterious effects on human health including metabolic, neurodegenerative, reproductive and 

developmental disorders (Godt et al., 2006; Bernard, 2008). Exposure to metal compounds 

including arsenic, cadmium and mercury has long been known to cause damage to 

mammalian testes (Parizek, 1957; Marettov et al., 2015), potentially contributing to the 

decline in male reproductive health that has occurred over the last 60 years (Huyghe et al., 

2003; Bray et al., 2006). Cadmium is of particular concern due to its increasing 

environmental levels, caused by pollution from a variety of sources (IPCS, 1992; Jarup et al., 

1998; WHO, 2007, ATSDR, 2011; Six and  Smolders 2014; Van Assche et al., 2014; CCC, 

2014). To date, cadmium has no known biological function in mammals and prolonged 

exposure to it has been associated with developmental and functional changes within tissues 

including testicular tissue (Marettov et al., 2015; Prozialeck et al., 2006; Siu et al., 2009; 

Sarkar et al., 2013).  

The mammalian testis consists of germ cells and somatic cells (Svingen and Koopman, 

2013). The somatic cells comprise two major lineages, known as Sertoli cells and Leydig 

cells. Sertoli cells play key role in testicular development and functions (Mruk and Cheng, 

2003). The early stage of gonadal development is associated with the migration of supporting 

cells from the coelomic epithelium of the early embryo, which contribute to the population of 

Sertoli cell precursors (Wilhelm et al., 2007). Furthermore, changes in cell shape, formation 

of adhesion and cytoplasmic protrusion in somatic gonadal precursors (SGPs) enhances 

ensheathment of primordial germ cells (PGCs) and the formation of compacted gonads in the 

developing embryo (Martineau et al., 1997). Hence, the migration and proliferation of Sertoli 
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cells is therefore an essential part of testis development (Mruk and Cheng, 2003; Martineau et 

al., 1997).  

In this respect, the cytoskeleton and its regulatory proteins play important roles in cell 

proliferation, cell shape and motility (Artvinli, 1987; Vogl et al., 1993; Vogl et al., 2008). For 

instance, cell migration is dependent on the actin network and its dynamics, which are 

regulated by a number of proteins such as cofilin (Pollard and Borisy, 2003; Dos Remedios et 

al., 2002). Actin regulator protein enables (ena) plays an important role in the spacio 

temporal organisation of somatic gonadal precursors (SGPs) in the formation of the 

compacted gonad (Bear et al., 2000; Sano et al., 2012). These cellular processes are important 

targets for environmental disrupting compounds such as heavy metals (Waisberg et al., 2003; 

Rani et al., 2013). Several in vivo and in vitro studies have reported cadmium toxicity in 

mammalian testes and their cellular components (Siu et al., 2009; Jin et al., 2004; Xiao et al., 

2014).  

Reduced Sertoli cell number in sheep foetuses was observed in two in vivo studies following 

sewage sludge exposure during early stages of development (Rhind et al., 2005; Egbowon, 

2010). The cause of this reduction was associated with suppressed levels of testosterone, 

suggesting that testosterone may play a key role in Sertoli cell proliferation (Johnston et al., 

2003), and raising the possibility that treatment-induced suppression of testosterone levels 

could have contributed to the reduction in Sertoli cell number. However, it is possible that 

exposure to environmental pollutants may have direct effects on the population of the 

migrating and proliferating cells occupying the gonadal ridge of the early embryo. In vivo 

studies on testicular cells are numerous; however, effective cell lines can greatly facilitate 

research on testicular development and functions by providing a readily available supply of 

cells with consistent and predictable properties.  
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There are several Sertoli cell lines, some of which were created to retain properties from the 

parent cell type required for specific studies (Robert, 2004; Guttenbach et al., 2001). For 

example, TM4 cells are an established cell line of Sertoli cell origin, derived from the normal 

testes of a prepubertal 11 – 13 day old BALB/c mouse (Mather et al., 1982; Mather, 1980). 

Many studies in which this cell line was used as a model of Sertoli cell function have shown 

that it maintains many of the characteristics of immature and differentiated native Sertoli 

cells (Guttenbach et al., 2001; Catalano et al., 2003; Shaban et al., 1995).  

The current study has used the TM4 cell line to evaluate the toxicity of cadmium on Sertoli 

cell migration with respect to the effects on cell survival, cell morphology, cytoskeletal 

organization and the underlying molecular events associated with cell migration. 

   

2. MATERIALS AND METHODS 

2.1 Cell Culture 

The mouse Sertoli cell line TM4 (ATCC number: CRL-1715) was purchased from the 

American Type Culture Collection (Manassas, VA, USA). Cells were cultured in growth 

medium, consisting of Dulbecco’s modified Eagle’s medium (DMEM) containing Ham’s F-

12 in a 1:1 mix (DMEM/HAMs F-12)  with 15 mM 4-(2-hydroxyethyl)-1-piperazine ethane 

sulfonic acid (HEPES), 2.5 mM glutamine, 0.5 mM sodium pyruvate and 1.2 g/L sodium 

bicarbonate (Bio-Whittaker, Lonza, UK), supplemented with 5 % v/v horse serum (HS) and 

2.5 % v/v fetal bovine serum (FBS) (Sigma Aldrich Co. Ltd., Poole, UK), in a humidified 

atmosphere containing 5 % CO2/95 % air at 37oC. All experiments were performed using 

plastic tissue culture flasks and dishes or microplates (Sarstedt, Leicester, UK). Cell culture 

growth medium was changed twice weekly and cells were sub-cultured before reaching 

confluence.  
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2.2 Measurement of Cell Metabolism by Methyl Blue Tetrazolium Reduction Assay 

Cell viability was monitored via the reduction of 3-[4, 5-dimethylthiazol-2-yl]-2, 5-

diphenyltetrazolium bromide (MTT) by cellular dehydrogenases. Cells were plated in 

Corning 24-well plates at 25,000 cells/ml in 0.5 ml growth medium and left for 24 h to 

recover. Growth medium was carefully aspirated from the wells and replaced with fresh 

medium containing a range of concentrations (up to 25 μM) of CdCl2 for 3 exposure times (4 

h, 24 h, and 48 h). A volume of 50 µl of MTT (5 mg/ml in phosphate buffered saline (PBS: 

137 mM NaCl, 2.7  mM KCl, 10  mM Na2HPO4, 2 mM KH2PO4) was added to each well 1 h 

prior to the end of the experimental incubation time and cells incubated for a further 60 min 

at 37oC. Growth medium was then carefully aspirated, 0.5 ml DMSO added per well and the 

plates were gently agitated to dissolve the reduced formazan product. The absorbance of the 

solubilised reduced MTT was then measured in a standard microtitre plate reader at a 

wavelength of 570 nm. Where appropriate, indicative concentrations causing 50% inhibition 

of MTT reduction compared to the control (IC50) were estimated from individual 

concentration response curves from at least 4 independent experiments and are expressed as 

mean ± SEM. 

2.3 Measurement of Membrane Leakage by Lactate Dehydrogenase Release Assay 

Cell viability was also monitored in Sertoli cells by measuring lactate dehydrogenase (LDH) 

release. Cells were plated in 96-well flat bottom plates, at 25,000 cells/ml in 0.2 ml growth 

medium and left for 24 h to recover. Growth medium was carefully aspirated from the wells 

and replaced with fresh medium containing a range of concentrations (up to 25 μM) of CdCl2 

for 3 exposure times (4 h, 24 h, and 48 h). Cell viability assays were performed by measuring 

the amount of LDH released into the medium, which was detected colorimetrically using the 

CytoTox 96® Non-Radioactive Cytotoxicity LDH assay kit (Promega, Southampton, UK).  
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2.4 Measurement of Viable Cell Counts by Trypan Blue Exclusion Assay 

Viable cell counts were determined using an automated cell counter (Bio-Rad Laboratories 

Inc., Hemel Hempstead, UK). This was achieved by using the TC20TM Trypan Blue 

exclusion assay procedure (Bio-Rad Laboratories Inc., Hemel Hempstead, UK). Briefly, cells 

were plated in T25 culture flasks at 25,000 cells/ml in 10 ml growth medium and left for 24 h 

for recovery. They were then treated with (1 µM and 12 µM) or without CdCl2 for 4, 24 and 

48 h. After the incubation period, the cell monolayers were detached with cell scrapers, 

pelleted by centrifugation and washed twice by centrifugation with PBS. Each cell pellet was 

then resuspended in 2 ml serum free medium prior to the assessment of cell viability. 

2.5 Analysis of Cell Morphology 

Morphological effects of CdCl2 were determined on Sertoli cells stained either with 

Coomassie blue or haematoxylin and eosin (H and E) dyes after 4 h exposure. 

2.5.1 Coomassie Blue Staining 

Cells were plated in 24-well plates at 25,000 cells/ml in 0.5 ml growth medium per well and 

left for 24 h to recover, after which they were exposed to lethal and sub-lethal concentrations 

of the test compounds for 4 h. Cells were then fixed with 90 % v/v methanol for 10 min at 

minus 20 °C and subsequently stained with Coomassie Blue, (0.1 % w/v Coomassie Brilliant 

Blue R-250, 50 %  v/v methanol and 10 % v/v glacial acetic acid) which was added to each 

well at 300 µl per well for 5 min. The staining solution was then removed, the monolayers 

rinsed 3 times with distilled water and left overnight to air-dry.  

2.5.2 H and E staining 

Alternatively, 0.5 ml of cell suspension were plated on poly-L-lysine coated coverslips at 

25,000 cell/ml in 24-well plates and then incubated for 24 h for recovery. The medium was 
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discarded and the cells were re-incubated in the absence and presence of CdCl2 (1 µM and 12 

µM) for 4 h. Cells were fixed with 90 % v/v methanol for 10 min at -20oC and washed three 

times with PBS, after which the cell monolayers were rinsed in water. This was then placed 

in single strength Gill’s Haematoxylin (haematoxylin 0.6 % w/v, aluminium sulphate 0.42 % 

w/v, citric acid 0.14 %, w/v sodium iodate 0.06 % w/v, ethylene glycol 26.9 % v/v: Scientific 

Laboratories Supplies, Nottingham UK) for 90 seconds and washed in tap water. For cell 

blueing, coverslips were immersed in 1 % (w/v) lithium carbonate and then washed in 

distilled water. For cytoplasm staining, the coverslips were immersed in 1 % w/v eosin for 10 

seconds after which they were washed in distilled water. This was then followed by placing 

the coverslips in an ascending ethanol series (i.e. 3 min each in 50 v/v % ethanol, 70 % v/v 

ethanol and absolute ethanol). The cover slips were placed in xylene for 5 minutes and 

allowed to air dry for 10 seconds. They were mounted on glass slides using XAM mounting 

medium (Merck Darmstadt, Germany).  

2.6 Image Processing 

The slides were examined with the aid of fluorescence microscope (Olympus BX51TF) using 

bright field optics at a final magnification of x 200 and images were randomly captured from 

nine fields of view per slide for each treatment. The captured images were processed by using 

Adobe Photoshop C56 (64 Bit) to quantify the proportions of Sertoli cells with a discernible 

leading edge and rounded or compact cell bodies. The morphological feature of a crescent 

shape rosette-like continuous cytoplasmic extension was identified as a discernible leading 

edge. The total number of parameters counted was averaged for each set of experiments and 

the values were expressed as total count/100 cells ± SEM for 4 independent experiments. 

2.7 Indirect Immunofluorescence Staining  
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For immunofluorescence staining, cells were plated in 8-well µ-slide (ibiTreat) chamber 

slides (Thistle Scientific, Glasgow, UK) at 25,000 cells/ml in 0.2 ml growth medium and left 

for 24 h to recover, after which they were exposed to 1 µM and 12 µM CdCl2 for 4 h. Cells 

were then fixed with pre-warmed formalin at 37 ˚C for 10 min and washed three times with 

PBS. Permeabilization was performed by incubating the cells for 15 min at room temperature 

with 0.05 % (v/v) Tween-20 in PBS after which cells were washed 3 times for 5 min with 

PBS. Non-specific binding was prevented by blocking with 3 % (w/v) bovine serum albumin 

(BSA) in PBS for 1 h at room temperature. Cells were then incubated overnight at 4oC in 

humidified chamber with primary antibodies to cytoskeletal proteins, as indicated in Table 1. 

After washing 3 times for 5 min with PBS, the cells were incubated for 2 h at 37°C in a 

humidified chamber with Alexa Fluor 488 rabbit anti mouse IgG (Life Technologies Ltd, 

Paisley, UK) diluted 1:500 in blocking buffer, after which a second series of PBS washes was 

performed. Fluorescence images were acquired using a Leica laser-scanning confocal 

microscope (Leica SP5 II). 

2.8 Sertoli Cell Migration Assays  

In order to monitor the effects of CdCl2 on cell migration, a monolayer ‘scratch’ assay was 

performed to mimic the wound healing process in migrating cells such as fibroblasts. In a 

conventional wound healing process, it has been suggested that the generated wound closes 

by migration and proliferation of the cells (Menon et al., 2009; Mertens-Walker et al., 2010). 

Therefore cell proliferation was stopped prior to CdCl2 treatment. In brief, cells were seeded 

in black 96-well microplates at 25,000 cells/ml in 0.2 ml growth medium and incubated at 

37oC. When the cell monolayer reached 90 % confluence, growth medium was replaced with 

fresh growth medium containing 5 µg/ml 5-fluorouracil (5-FU), which was not toxic to the 

cells as determined by MTT assay after 24 h. The monolayer was rinsed with serum free 

growth medium and the cells were incubated with 10 µM carboxyfluorescein diacetate  
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Antibody Type Source 
Dilution:  

WB/IF 

Anti-actin (AC40) Mouse IgG Sigma-Aldrich, UK 1:1000 (1:100) 

Anti-tubulin (B512) Mouse IgG Sigma-Aldrich, UK 1:500 (1:100) 

Anti-intermediate 

filament antigen 

Mouse IgG ATCC 1:200 (1:100) 

Anti-cofilin Rabbit IgG abcam Biochemicals 1:1000 

Anti-phospho cofilin Rabbit IgG abcam Biochemicals 1:1000 

Anti-oncoprotein 18 Goat IgG Santa Cruz Biotechnology 1:500 

Anti-phospho 

oncoprotein 18 

Rabbit IgG Santa Cruz Biotechnology 1:500 

 

Table 1 Antibodies used for western blotting and indirect immunofluorescence analysis. WB = Western 
blotting; IF = Indirect immunofluorescence.  

succinimidyl ester (CFSE) dye for green fluorescence. This was followed by scratching of 

monolayers with a p20 pipette tip to create an extended and definite scratch in the centre of 

the well. The detached cells were removed by washing with serum free growth medium, 

which was then replaced with fresh growth medium with or without 1 µM or 12 µM CdCl2 

and incubated for a further 24 h. Fluorescence images of live cells of the scratch closure areas 

were monitored and acquired using a HC PL APO 10×/0.40 objective lens on a Leica-TCS-

SP5 II laser scanning confocal microscope (Leica Microsystems), equipped with a 

humidified, temperature and CO2 controlled live cell chamber. For imaging, CFSE was 

excited with a 488 nm laser-line for typically between 100-500 ms/image with laser intensity 

set to 25 % maximum. Confocal image z-stacks of living cells were recorded with a frame 

size of 512 x 512 pixels, a pixel size of 100 nm and a z-step size of 400 nm every 30 min. 

The representative images are maximum intensity Z-projections of 10 slices of 1 micron 

thickness at 4, 12 and 24 h. The captured images were processed using Adobe Photoshop C56 
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(64 Bit) to quantify the invading cells in the scratch area at each time point, as previously 

described (Camp et al., 2010; Stewart et al., 2012; Ling et al., 2013). Data were obtained 

from at least four separate experiments. 

2.9 Gel Electrophoresis and Western Blotting Analysis  

Sertoli cell lysates were prepared to determine changes in protein levels. In brief, cells were 

plated in T75 culture flasks at 25,000 cells/ml in 40 ml growth medium and left for 24 h to 

recover, after which they were exposed to 1 µM and 12 µM CdCl2 for two exposure times (4 

and 24 h). The growth medium was removed and monolayers rinsed gently with ice-cold 

PBS. Cells were then detached in ice-cold 0.02 % (w/v) ethylenediaminetetraacetic acid 

(EDTA) in Tris-buffered saline (TBS: 10 mM Tris, 140 mM NaCl, pH 7.4) using a cell 

scraper. Cells were pelleted by centrifugation and the pellets were lysed in pre-heated 0.5 % 

(w/v) sodium dodecyl sulphate (SDS) (w/v) in TBS and then incubated at 100 °C for 5 min. 

Protein concentration of cell extracts was determined by the bicinchoninic acid assay using 

BSA as the standard (Walker, 1996).  

After protein assay, lysates were boiled in electrophoresis sample buffer (62.5 mM TRIS, 2 % 

w/v SDS, 10 % v/v glycerol, 0.002 % w/v  bromophenol blue, 5 % v/v β-mercaptoethanol, 

pH 6.8) for 5 min (Laemmli, 1970). Approximately 10 µg of protein from each sample from 

at least 4 independent experiments were separated by polyacrylamide gel electrophoresis in 

the presence of SDS (SDS-PAGE) in a 10 % w/v polyacrylamide resolving gel overlaid with 

a 4 % w/v polyacrylamide stacking gel (Laemmli, 1970), after which they were 

electrophoretically transferred onto nitrocellulose membrane filters as previously described 

(Towbin et al., 1989). Membranes were blocked for 1 h at room temperature with 3 % w/v 

BSA in TBS, and then probed overnight at 4°C with a variety of primary antibodies, diluted 

as indicated in Table 1. Membranes were then washed thoroughly with 0.05 % v/v Tween20 
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in TBS (typically six 10-min washes) and incubated for 2 h at room temperature with 

horseradish peroxidase-conjugated anti-mouse, anti-rabbit or anti-goat immunoglobulin G 

diluted 1:1000 in 3 % w/v BSA in TBS, as appropriate. After extensive washing with 0.05 % 

w/v Tween20 in TBS, antibody binding was revealed with the enhanced chemiluminescence 

western blotting detection reagent ECL plus (GE Healthcare, Hatfield UK). Digital images 

were captured using a G:BOX imager (Syngene, Cambridge, UK), and band intensity was 

quantified using Advanced Image Data Analyser (AIDA) software (Raytest GmbH, 

Straubenhardt, Germany).  

2.10 Statistical Analysis 

Graph Pad Prism 6 (GraphPad Software, Inc., San Diego, CA, USA) was used for all 

statistical analysis. The significance of differences between more than 2 sets of data were 

determined by one-way analysis of variance (ANOVA) and comparison between means was 

analysed by the Bonferroni Multiple Comparison Post-hoc Test. Differences were deemed to 

be significant when p<0.05 and are highlighted with asterisks. All data are presented as mean 

+ SEM. 

 

3. RESULTS 

3.1 Effects of CdCl2 on Cell Viability in Sertoli Cells 

The effects of CdCl2 on cell viability were assessed by MTT reduction assays, lactate 

dehydrogenase (LDH) release into the growth medium and Trypan Blue exclusion assay 

(Figure 1). Exposure of Sertoli cells to different CdCl2 concentrations (1 - 25 µM) for up to 

48 h resulted in a dose and time dependent fall in the level of MTT reduction.  
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Cells exposed to concentrations from 6 - 25 µM exhibited statistically significant decreases in 

MTT reduction after 24 h exposure (approximately 25 – 50 % inhibition; p<0.05) (Figure 1). 

Increasing incubation time to 48 h resulted in increased toxicity being observed between 3 - 

25 µM (approximately 50 - 80 % inhibition of control values; p<0.05). However, CdCl2 did 

not affect MTT reduction by Sertoli cells after 4 h of incubation at any of the concentrations 

tested and 1 µM CdCl2 had no effect on MTT reduction at any of the time points. The toxic 

effects of CdCl2 on Sertoli cells at different exposure times were further compared in terms of 

IC50 value at each time point, which is defined as the concentration required to inhibit the 

level of MTT reduction by 50 % compared to the non-exposed control. The IC50 value was 

not reached at 4 h exposure but was estimated to be 12 µM and 4 µM after 24 and 48 h 

exposure, respectively.  

In agreement with this data, the results from LDH release assays showed that exposure of 

Sertoli cells to different concentrations (1-25 µM) of CdCl2 resulted in a dose and time-

dependent increase in LDH leakage. Concentrations from 6 - 25 µM exhibited statistically 

significant (p<0.05) cytotoxic effects on Sertoli cells following 24 h exposure, and increasing 

incubation time to 48 h resulted in increased LDH release being observed between 3 - 25 µM 

at 48 h (Figure 1). As was the case for MTT reduction assay, 1 µM CdCl2 had no significant 

cytotoxic effects at any time point. The results from Trypan Blue exclusion assays showed 

that cell proliferation (total viable cell count) was slightly but not significantly increased by 1 

µM CdCl2 exposure up to 24 h. However, cell proliferation was significantly reduced by 

exposure to 12 µM CdCl2 from 24 to 48 h (Figure 1). 
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Figure 1: Effects of CdCl2 on cultured Sertoli cell viability measured by MTT reduction, LDH release and 
Trypan Blue exclusion assay. Cells were incubated in the absence (0) or presence of 1-25 µM CdCl2 at 
different time points, and cell viability assessed by (A) MTT reduction, (B) LDH release and (C) Trypan Blue 
exclusion assays as described in Materials and Methods. Data in A and B represent means of four independent 
experiments + SEM and the results are presented as percentage relative to the corresponding control (=100 %) 
and data for the latter represent means of four independent experiments + SEM. Asterisks * indicate p<0.05. 
3.2 Effects of CdCl2 on Sertoli Cell Morphology 

In order to assess changes in the morphology of Sertoli cells after CdCl2 treatment, cells were 

incubated for 4 h in the absence and presence of 1 µM or 12 µM CdCl2. Cells were fixed and 

stained with either Coomassie blue or H & E dyes (Figure 2). By using light microscopy, the 

morphological features that were studied included 1) leading edges (cytoplasmic protrusion) 

of migrating cells.  
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Figure 2: Effects of CdCl2 on the morphology of cultured Sertoli cells. Sertoli cell monolayers were 
incubated for 4 h in the absence (0) and presence (1 µM or 12 µM) of CdCl2. They were then fixed in 90 % v/v 
methanol before staining with Coomassie blue or haematoxylin and eosin dyes (H and E) and analysed as 
described in Materials and Methods. Indicated are typical examples of leading edges (upward arrows) and round 
cells (downward arrow). Scale bar = 100 µm.  
 
This represents formation of a continuous smooth curved rosette shaped feature that is equal 

to or wider than the width of cell body 2) rounded or compact cell shape in other cells. The 

proportion of Sertoli cells exhibiting a clearly discernible leading edge was significantly 

reduced in the presence of 1 µM and 12 µM CdCl2 (Figure 3). The formation of rosette like 

nature of leading edge was disrupted and became shorter and truncated with the higher 

concentration (Figure 2). The population of rounded or compact cells increased significantly 

following exposure to 1 µM concentrations of CdCl2 (Figure 3). As microfilament (MF) 

assembly at the leading edge is known to play an important role in cell migration, we next 

investigated whether CdCl2 treatment affected the Sertoli cell cytoskeleton, by indirect 

immunofluorescence staining. 
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Figure 3: Quantification of morphological changes in Sertoli cells after CdCl2 treatment. Shown are the 
morphological data from both Coomassie blue (CBB) and H and E stained Sertoli cells. Histogram data 
represent mean count of each parameter per 100 cells for each treatment from four independent experiments ± 
SEM. Asterisk  indicates a significant change (p<0.05) compared to the untreated control. 

 

3.3 Effect of CdCl2 on the Organisation of Cytoskeletal Components in Cultured Sertoli 

Cells  

The morphological changes induced by 4 h exposure to CdCl2 in Sertoli cells were further 

examined by indirect immunofluorescence microscopy of fixed cell monolayers using 

monoclonal antibodies against the cytoskeletal proteins actin, tubulin and intermediate 

filaments (Figure 4). Reduced staining intensity and possible disorganization of actin and 

tubulin networks appeared to be induced by CdCl2 treatments. For instance, actin staining at 

the leading edge in CdCl2 treated cells appeared to be relatively weak compared to the control 

(Upward arrows in Figure 4). By contrast, the staining showed no major effect on the cellular 

distribution of intermediate filament networks with CdCl2 treatment. The possibility that the 

morphological changes consistent with cytoskeletal disruption by cadmium exposure reflect 

an effect on cytoskeletal protein levels or filament dynamics was next investigated. 
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Figures 4: Effects of CdCl2 on cytoskeletal networks in cultured Sertoli cells. Shown are monolayers of 
Sertoli cells cultured for 4 h in the absence (0) or presence (1µM or 12 µM) of CdCl2, before being fixed, 
permeabilised and incubated with anti-actin, anti-tubulin and anti-IF antibodies. This was followed by 
incubation with Alexa Fluor 488 rabbit anti mouse IgG, as described in Materials and Methods. Scale bar = 100 
µm. The intensity of actin and tubulin staining was reduced with CdCl2 treatments. Indicated are the typical 
leading edges (upward arrows) of CdCl2 treated and untreated Sertoli cells. Actin staining at the leading edges 
was reduced and/or disrupted with CdCl2 treatments.  
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3.4 Effects of CdCl2 on the Levels and Phosphorylation Status of Cytoskeletal Proteins 

in Sertoli Cells 

In order to examine the effects of CdCl2 on cytoskeletal proteins and their regulatory proteins 

in Sertoli cells, Western blotting analysis was used to determine the levels of actin, total 

cofilin and phosphorylated cofilin (p-cofilin) following exposure to 1 µM and 12 µM CdCl2. 

A comparative panel of probed blots is shown in figure 5. The levels of reactivity of anti-

actin with cell lysates showed a consistent dose dependent decrease at all-time points (Figure 

6).  

 

Figure 5: Cytoskeletal protein detection on Western blots of Sertoli cell lysates. Cells were incubated 
without (0) or with1 μM and 12 μM CdCl2 at the time points indicated. They were then lysed and protein 
extracts analysed by SDS-PAGE and Western blotting, as described in Materials and Methods. Shown are 
images of representative blots (from 4 independent experiments) probed with antibodies to actin, tubulin, cofilin, 
p-cofilin, OP18 and p-OP18, as indicated.  
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Figure 6: Densitometric analysis of probed Western blots of Sertoli cell lysates. Reactive bands on images 
of Western blots were quantified using AIDA software as described in Materials and Methods. Data represent 
means from four separate independent experiments and results are presented as percentage of control 
(normalised to GAPDH - data not shown) ± SEM. Asterisks indicate changes that were significant (*p<0.05, 
**p<0.01) compared to the corresponding non treated control. 
 

The role of cofilin in the regulation of MF dynamics and in relation to the modulation of cell 

migration is well established (Sumi et al., 1999; Gerthoffer, 2007; Zhang et al., 2011). When 

cofilin binds to polymerised actin it can destabilise MFs and its interaction with actin is 
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blocked when phosphorylated by specific protein kinases, such as LIM (Lin11/Isl-1/Mec3) 

kinase (LIMK1), which target members of the ADF/cofilin family of actin binding and 

filament severing proteins (Sumi et al., 1999). Western blots were therefore probed with 

antibodies available to total cofilin and LIMK phosphorylated cofilin, to study the effects of 

Cd2+ exposure on the phosphorylation status of cofilin. Using this approach, a biphasic effect 

was observed in the case of reactivity with anti-total cofilin in cells exposed to both 

concentrations of CdCl2, with significant increases at 4 h followed by decreases at 24 h 

exposure relative to the corresponding controls (Figure 6). Anti-p-cofilin reactivity with 

whole cell lysates was reduced on exposure to 1 µM CdCl2 at 4 h and 24 h. By contrast, in 

the presence of 12 µM CdCl2, reactivity of anti-p-cofilin was increased relative to the control 

at all-time points (Figure 6).  

To analyse possible effects of the CdCl2 treatments on the expression of other cytoskeletal 

proteins, the reactivity of antibodies to MT proteins such as tubulin was also determined by 

Western blotting analysis (Figure 5). The results showed that anti-tubulin reactivity was 

significantly reduced in a time and dose dependent manner in response to CdCl2 treatments.  

Since MTs play important roles not only in mitosis but also in cell motility (Cole and 

Lippincott, 1995; Larsson et al., 1999), it was of further interest to determine whether CdCl2 

was capable of interfering with regulation of MT dynamics by affecting the levels and 

phosphorylation status of regulatory proteins such as oncoprotein18 (OP18)/stathmin, which 

can destabilise MTs (Belmont and Mitchison, 1996; Andersen, 2000; Cassimeris, 2002). 

Continuous exposure of Sertoli cells to 1 µM CdCl2 significantly reduced reactivity of anti-

OP18 after 24 h exposure but there was a slight but not statistically significant transient 

increase at 4 h and decline at 24 h in the presence of 12 µM CdCl2 (Figure 6). However, both 

concentrations of CdCl2 induced a significant increase in the reactivity of anti-p-OP18 under 

all conditions tested.  
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Since exposure of Sertoli cells to CdCl2 results in disruption of structures resembling the 

leading edge, disruption of cytoskeletal networks and their regulatory proteins, the possibility 

that exposure to this agent may reflect an effect on the regulation of cell migration was 

investigated  

3.5 Inhibition of Sertoli Cell Migration by CdCl2 Detected by Live Cell Imaging 

In order to determine whether the morphological and cytoskeletal changes observed in Cd2+ 

exposed Sertoli cells might reflect altered ability of cells to migrate, scratch assays were 

performed in the absence and presence of 1 µM and 12 µM CdCl2 (Figure 7). Since in a  

 
Figure 7: Typical images showing the effects of CdCl2 on Sertoli cell migration. After 5-FU treatment and 
CFSE labelling of the cells, a scratch application was made and live cell migration was monitored in the absence 
and presence of CdCl2 by confocal fluorescence microscopy as described in Materials and Methods. Shown are 
typical images of CFSE labelled Sertoli cells at 4, 12 and 24 h after scratching. Scale bar represents 100 µm. 
Vertical white lines delineate areas in which cell migration was assessed.  
 

conventional wound healing process, the generated wound closes by migration and 

proliferation of the cells, it was necessary to block cell proliferation prior to the scratch assay 

in this study. For this, Sertoli cells were treated for 24 h prior to CdCl2 treatment with 5-FU.  
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Figure 8: Morphological analysis of the effects of CdCl2 on Sertoli cell migration. Cell migration into the 
scratch area was assessed as described in Materials and Methods. Data represent mean values for each treatment 
from four separate independent experiments ± SEM and results are presented as percentage of control at 24 h. 
Asterisk indicates changes that were significant compared to the non Cd2+-treated control (p<0.05). Cell 
migration was reduced with CdCl2 treatments in Sertoli cells though cell death is likely to have contributed to 
the effect at 12 µM. 

 In non Cd2+ treated cells, the population of migrating cells in the scratch area progressively 

increased after scratch application and the scratch region was 90 % closed after 24 h. The 

data shown in figure 8 indicate a concentration dependent inhibitory effect of CdCl2 on the 

invasion of the scratch area by Sertoli cells compared to the non CdCl2 treated control. 

Movies with time lapse images are available in supporting information files online (Figure 

S1). 

 

4. DISCUSSION 

Data obtained from a series of viability assays in the present study have demonstrated that 

Cd2+ is cytotoxic to TM4 Mouse Sertoli cells in a time and concentration-dependent manner, 

but that 1 µM CdCl2 is sub cytotoxic at all of the time points studied. Using MTT reduction 

as the main end point, Jiang et al. (2009) suggested that CdCl2 had a biphasic effect on the 
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proliferation of human embryo lung fibroblasts inducing an increase at low concentrations 

(i.e. 1 µM) and a decrease at higher concentrations (i.e. 10 µM).  

Cd2+ concentrations higher than 1 µM inhibit DNA synthesis but as low as 100 pM has been 

found to stimulate DNA synthesis and cell proliferation significantly in three mammalian cell 

types, namely L6J1 rat myoblasts, LLC-PK1 porcine renal epithelial cells, and a primary rat 

chondrocyte culture (Zglinicki et al., 1992; Misra et al., 2002). The data from the present 

study demonstrate that cell proliferation is slightly but not significantly increased by exposure 

to 1 µM CdCl2 up to 24 h, but that the level of cell proliferation is significantly reduced by 

exposure to 12 µM CdCl2 at later time points. 

 

Thus, accumulated evidence suggests that, under certain conditions, CdCl2 exposure can 

induce cell proliferation or reduce cell viability, consistent with the possibility that transient 

changes in cell proliferation may occur at lower CdCl2 concentrations. Inconsistencies with 

the data obtained in the present study for 1 µM CdCl2, may be due to differences in cell type 

and culture conditions. The data obtained in the present study with 12 µM CdCl2, however, 

are consistent with previous reports that cadmium concentrations ranging from 10 µM to 40 

µM reduce Sertoli cell viability and proliferation in piglets (Zhang et al., 2010).  

 

The IC50 values for Sertoli cells exposed for 24 h and 48 h to CdCl2 in the current study were 

12 µM and 4 µM respectively, as determined by MTT reduction assay, indicating a 

progressive increase in toxicity over time. A number of previous studies have demonstrated 

cytotoxic effects of cadmium in various animal and cell models; such data are summarised in 

Table 2. Compared to the data shown for other cell lines, the relatively low IC50 value for 

CdCl2 toxicity towards Sertoli cells in culture indicates a relatively high sensitivity of this cell 

type to the cytotoxic effects of CdCl2. This is consistent with the fact that testicular tissue is a  
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Chemical 
form 

 

              Cell line 

 

  AT  

 

EC50/IC50 
(µM) 

 

ET 
(h) 

 

    Reference 

 

CdCl2 

 

HTC (hepatoma cells) 

 

MTT 

 

100 

 

24 

 

Fotakis and Timbrell, 2006 

CdCl2 HepG2 (hepatoma cells) MTT 15 24 Fotakis and Timbrell, 2006 

Cd(CH3CO2)2 REF (rat embryo fibroblasts CA 1.5 24 Lin et al., 1995 

CdCl2 WRL (human fetal liver) TB 4.7 24 Bucio et al., 1995 

CdCl2 CHO (hamster ovary cells) NR 8.3 24 Garcia-Femandez et al., 2002 

Cd(CH3CO2)2 HFW (human skin fibroblasts) CA 25 24 Lin et al., 1995 

CdCl2 1407 (human intestinal 

epithelium) 

NR 53 48 Keogh et al., 1994 

CdCl2 LLC-PK1(Porcine renal 

epithelium) 

NR 40 24 Olabarrieta et al., 2001 

CdCl2 C6 (rat glioma cells) NR 1 48 Wätjen et al., 2002 

CdCl2 C6 (rat glioma cells) NR 0.7 24 Wätjen et al., 2002 

CdCl2 E367 (rat neuroblastoma cells) NR 10 48 Wätjen et al., 2002 

CdCl2 A549( human lung 

adenocarcinoma cells 

NR 160 48 Wätjen et al., 2002 

CdCl2 Primary rat mid-brain neuron-glia MTT 2.5 24 Yang et al., 2007 

 

Table 2 Published EC50/IC50 values for Cd2+ towards cultured mammalian cells. Shown are µM effective or 
inhibitory concentrations (EC50/IC50) after exposure to cadmium in different in vitro cell cultures. AT = Assay 
type, ET = Exposure time, MTT = Methylblue tetrazolium test, CA = Clonogenic assay, TB = Trypan Blue, NR 
= Neutral Red. 

 

known target of Cd2+ toxicity in vivo and strongly supports the view that the TM4 cell line 

represents a useful model for mechanistic studies of cadmium toxicity in testicular cells (Jin 

et al., 2004; Zhang et al., 2010).  
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The morphological changes induced by 4 h exposure to CdCl2 were consistent with the 

possibility that exposure to this agent might affect the formation of the leading edge in 

migrating cells and that sub-lethal concentrations of this heavy metal might be capable of 

disrupting cell migration in Sertoli cell cultures. The appearance of increasing numbers of 

compact or rounded cells with CdCl2 treatment could be indicative of increased rounding up 

of cells prior to cell division or cell death, and/or disruption of cytoskeletal networks.  

Changes to the morphology of other cell types and cell organelles could also be involved in 

the cytotoxicity of CdCl2. For instance, disruption of axons and dendrites has been noted in 

neuronal cells (Lopez et al., 2003). Sub-lethal concentrations of CdCl2 disrupted 

mitochondria and endoplasmic reticulum in human foetal hepatic cells and buffalo green 

monkey (BGM) renal cell lines, as observed by transmission electron microscopy (Bucio et 

al., 1995; Romero et al., 2003). The rounding up of cells as a result of exposure to sub-lethal 

concentrations of CdCl2 was also observed in sponge cells (Cebrian and Uriz, 2007), BGM 

cell lines (Romero et al., 2003), human lens epithelial cells (Song and Koh, 2012), and 

cortical neurons (Lopez et al., 2003), suggesting that it is likely to be a common effect of 

Cd2+ in a wide range of cell types.  

The morphological changes in CdCl2 treated Sertoli cells observed in the current study 

suggested that exposure to this heavy metal compound involved cytoskeletal disruption. 

Analysis of images of fixed cell monolayers stained by indirect immunofluorescence using 

anti-actin antibodies confirmed that there was a major change in the distribution of MFs. The 

staining pattern suggested that the amount of polymerised actin in the cytoplasm was reduced 

by CdCl2 treatments. Exposure of human Sertoli cells to CdCl2 at doses considered non-

cytotoxic (0.5 - 20 µM) caused disorganisation of actin microfilaments and induced 

relocation of adhesion proteins including N-cadherin and β-catenin at the cell-cell interface 

(Xiao et al., 2014). The perturbation was shown to be mediated via changes in F-actin 
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organization in which microfilaments became truncated and fragmented, retracting from 

areas near the cell-cell interface. Consequently, cell adhesion protein complexes failed to 

anchor onto the actin based cytoskeleton. Of particular interest was the fact that comparison 

of the staining intensity of this antibody with control cells suggested that the amount of actin 

polymer at the tip of the leading edge was reduced in Cd2+ treated cells. As lamellipodia 

formation is dependent on MF assembly at the leading edge (Pollard and Borisy, 2003), this 

finding suggests that disruption of MF assembly and/or dynamics might underlie the reduced 

formation of the leading edge, which could reflect a potential impact on cell migration and 

cytoplasmic protrusion in premature Sertoli cells.  

 

Cadmium treatment has been found to disrupt actin filaments in cultured MDCK cells (Mills 

and Ferm, 1989), and LLC-PK cells, causing a breakdown in tight junctions of the latter 

(Prozialeck and Niewenhuis, 1991). Studies of transepithelial electrical resistance in a 

cellular model of the blood-testis barrier, suggested that Cd2+ also disrupted Sertoli cell tight 

junctions in vitro (Janecki et al., 1992). This may at least in part involve cytoskeletal damage, 

as disruption of tight junction-associated MFs in rat Sertoli cells was linked to Cd2+ toxicity 

(Hew et al., 1993). The apparent lack of effect on overall distribution of IFs observed by 

indirect immunofluorescence in the current work suggests that the organisation of the MF 

network is more sensitive than the IF arrays to disruption by CdCl2 in Sertoli cells. 

 

Since the observation that exposure to 1 µM CdCl2 impaired the formation of the leading 

edge and MF distribution at the leading edge suggested possible interference with cell 

movement, we then examined the effects of CdCl2 on Sertoli cell migration. The results from 

live cell imaging of scratched monolayers indicated that both concentrations of CdCl2 had an 

inhibitory effect on Sertoli cell migration compared to non Cd2+ treated controls. Since actin 
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is directly involved in cell movement, we then determined the effect of CdCl2 on the level of 

actin by Western blotting. Analysis of densitometric data suggested that CdCl2 induced a 

concentration dependent reduction in the levels of anti-actin reactivity, suggesting that total 

actin levels were depleted during the course of cell migration experiments.  

 

The observed effects on cell migration in the current study are in agreement with the ability 

of similar (0.5-1 µM) sub-cytotoxic levels CdCl2 to interfere with trophoblast cell migration 

by disrupting the actin cytoskeleton (Alvarez and Chakraborty, 2011). The current study has 

shown that exposure to 1 µM CdCl2 has no effect on Sertoli cell proliferation or viability but 

inhibits Sertoli cell migration, and that this is consistent with disruption of actin filaments. 

However, the data from cytotoxicity assays following 24 h exposure suggest that cell death 

may contribute to the impaired migration observed at the higher Cd2+ concentration.  

 

Analysis of anti-cofilin and anti-p-cofilin probed blots suggested a significant increase and 

decrease in reactivity, respectively, after 4 h exposure to 1 µM CdCl2 followed by a slight but 

significant decrease in the levels of both after 24 h. These effects are consistent with a 

transient increase in the availability of cofilin and a reduction in its phosphorylation state in 

the early stages of the cell migration assay in the presence of 1 µM CdCl2 compared to the 

control. Given the known role of cofilin in the regulation of MF dynamics, increased levels of 

active cofilin could be indicative of increased actin turnover, resulting in shorter actin 

filaments and thus shorter or less stable protrusions (Zhang et al., 2011). Our data therefore 

suggest that the inhibition of cell migration by 1 µM CdCl2 involves disruption of MF 

dynamics through interference with the expression pattern and phosphorylation state of 

cofilin. 
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The data obtained from Western blots of Sertoli cells exposed to 12 µM CdCl2 suggest that, 

although 4 h treatment lead to a rise in the levels of cofilin compared to the control, there was 

a similar increase in the level of p-cofilin, followed by a fall in the levels of total cofilin but 

not its phosphorylation state after 24 h. Western blotting analysis also suggested that 

enhanced cofilin phosphorylation occurs as a late event with 1 µM CdCl2 but as an early 

event with the higher concentration. Although any change in the levels of total or p-cofilin 

could potentially disrupt the normal regulation of MF dynamics, the observed differences in 

these parameters in lysates from cultures exposed to the two concentrations of CdCl2, suggest 

that they are likely to reflect a different impact on MF dynamics and organisation. 

 

In vitro studies on CdCl2 induced changes to cofilin are scarce; nevertheless, a number of 

studies on heat shock have described overexpression of cofilin being compensated by 

increased cofilin phosphorylation, which would reduce its binding to actin (Yang et al., 1998; 

Aizawa et al., 2001), an effect which was only observed with 12 µM CdCl2 in the present 

study. Other reports are documented in different cell lines especially in relation to cell 

migration studies. In lymphocytes, overexpression of HSP70 prevented the heat-induced 

phosphorylation of cofilin by reducing the extent of aggregation of the temperature dependent 

cofilin phosphatase slingshot. As a consequence, this led to improved cellular distribution of 

cofilin and hence increased chemotaxis (Simard et al., 2011; Zhang et al., 2011).  

The current study also shows an effect on the distribution of MTs, which appear to be 

depleted as shown by indirect immunofluorescence after 4 h exposure to CdCl2,. Therefore, 

the possibility that this toxin might affect MT dynamics at this and later time points was also 

investigated at a molecular level by western blotting analysis. This part of the study focused 

on the MT core protein tubulin and the MT binding protein OP18. A number of reports have 

associated OP18 with sequestering of tubulin heterodimers or promotion of MT catastrophes 
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in the regulation of MT dynamics (Larsson et al., 1997; Howell et al., 1999; Larsson et al., 

1999). These activities are dependent on the availability of specific sequences at the C and N 

terminal region of OP18, which determine the interaction between OP18 and tubulin (Howell 

et al., 1999). Other studies have reported that phosphorylation of OP18 is cell cycle regulated 

by cyclin-dependent kinases (Deacon et al., 1999). 

 Densitometric analysis of Western blots probed with antibodies to tubulin indicated that 

there was a dose dependent decrease in the levels of tubulin at a the two time points, though 

levels did not fall below approximately 70 % of control values in probed lysates from 1 µM 

CdCl2 treated cells. Further analysis of blots probed with antibodies to OP18, indicated that 

continuous exposure to 1 µM CdCl2 led to slight reductions in the levels of total OP18 after 

24 h, whereas 12 µM CdCl2 treatment caused a transient rise at 4 h followed by reduced 

levels compared to the control at 24 h. By contrast, the data were consistent with significant 

increases in OP18 phosphorylation for both CdCl2 treatments at 4 and 24 h. 

These findings suggest a consistent increase in the phosphorylation state of OP18 at the early 

time point for both concentrations of CdCl2, which could result in increased MT stability as a 

result of reduced binding of OP18 to tubulin. This effect would be accentuated at 24 h, where 

the total levels of OP18 but not the levels of phospho-OP18 drop significantly.  

 

With respect to the clinical relevance of the data presented in the current work, the levels of 

CdCl2 used in the current study are consistent with those of Cd2+ detected in various human 

reproductive tissues including testes (0.56 µg/g dry weight: 1.3 µM ), epididymis (0.97 µg/g 

dry weight: 2.2 µM), prostate glands (0.63 µg/g dry weight:1.4 µM) and seminal vesicle 

(0.71 µg/g dry weight:1.6 µM) (Oldereid et al., 1993). Seminal plasma cadmium 

concentrations in infertile males range from of 0.28 µg/l (2.5 nM) to 1.57 mg/l (14 µM) was 

associated with abnormal sperm number and motility in infertile men, while up to 
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approximately 0.9 ng/mg dry weight (2 µM) was detected in testicular tissue from infertile 

men with varicoceles, suggesting that much larger amounts accumulate in tissues than body 

fluids (Benoff et al., 2005; Akinloye et al., 2005; Benoff et al., 2009). Similar concentrations 

of CdCl2 were also observed in other mammals such as rats, mice, and bank voles. For 

example, increased testicular cadmium concentration  of 0.64 µg/g dry weight (1.4 µM), 

consistent with testicular dysfunctions such as decreased epididymal sperm concentration was 

observed in rats fed with cadmium-polluted radish bulbs for 12 weeks (Haouem et al., 2008). 

Cadmium contaminated diet resulted in increased testicular cadmium concentrations of 2.14 

nmol/g (4.8 µM) and 4.00 nmol/g (8.9 µM) in 1 month and 5 month old bank voles, 

respectively, after six weeks (Bonda et al., 2004). This was associated with testicular injuries 

such as haemorrhage in the interstitium, necrosis and apoptosis in seminiferous tubule 

epithelium of the young bank voles.  

 

In conclusion, this study has demonstrated for the first time that the inhibition of TM4 Sertoli 

cell migration by a clinically relevant sub-lethal concentration of CdCl2 is associated with 

altered distribution and dynamics of the MF network. Results also suggest that such exposure 

may affect stability of the MT network. This study thus provides novel insights into the 

potential mechanism of toxicity of cadmium on male reproductive health. 
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