128 research outputs found

    KAT6B-related disorder in a patient with a novel frameshift variant (c.3925dup)

    Get PDF
    Heterozygous pathogenic variants in the KAT6B gene, which encodes lysine acetyltransferase 6B, have been identified in patients with congenital rare disorders, including genitopatellar syndrome and Say-Barber-Biesecker-Young-Simpson syndrome. Herein, we report another Japanese patient with a KAT6B-related disorder and a novel de novo heterozygous variant in exon 18 of KAT6B [c.3925dup, p.(Glu1309fs*33)], providing further evidence that truncating variants in exon 17 and in the proximal region of exon 18 are associated with genitopatellar syndrome-like phenotypes

    Genetic regulation of pituitary gland development in human and mouse

    Get PDF
    Normal hypothalamopituitary development is closely related to that of the forebrain and is dependent upon a complex genetic cascade of transcription factors and signaling molecules that may be either intrinsic or extrinsic to the developing Rathke’s pouch. These factors dictate organ commitment, cell differentiation, and cell proliferation within the anterior pituitary. Abnormalities in these processes are associated with congenital hypopituitarism, a spectrum of disorders that includes syndromic disorders such as septo-optic dysplasia, combined pituitary hormone deficiencies, and isolated hormone deficiencies, of which the commonest is GH deficiency. The highly variable clinical phenotypes can now in part be explained due to research performed over the last 20 yr, based mainly on naturally occurring and transgenic animal models. Mutations in genes encoding both signaling molecules and transcription factors have been implicated in the etiology of hypopituitarism, with or without other syndromic features, in mice and humans. To date, mutations in known genes account for a small proportion of cases of hypopituitarism in humans. However, these mutations have led to a greater understanding of the genetic interactions that lead to normal pituitary development. This review attempts to describe the complexity of pituitary development in the rodent, with particular emphasis on those factors that, when mutated, are associated with hypopituitarism in humans

    Neurochondrin interacts with the SMN protein suggesting a novel mechanism for Spinal Muscular Atrophy pathology

    Get PDF
    Work in the Sleeman laboratory by Luke Thompson was funded by MRC-CASE studentship MR/K016997/1. This work was also supported by the Wellcome Trust [grant number 094476/Z/10/Z], which funded the purchase of the TripleTOF 5600 mass spectrometer at the BSRC Mass Spectrometry and Proteomics Facility, University of St Andrews.Spinal Muscular Atrophy (SMA) is an inherited neurodegenerative condition caused by reduction in functional Survival Motor Neurones Protein (SMN). SMN has been implicated in transport of mRNA in neural cells for local translation. We previously identified microtubule-dependant mobile vesicles rich in SMN and the splicing factor SmB, a member of the Sm protein family, in neural cells. By comparing the proteome of SmB to that of SmN, a neural-specific Sm protein, we now show that the essential neural protein neurochondrin (NCDN) interacts with Sm proteins and SMN in the context of mobile vesicles in neurites. NCDN has roles in protein localisation in neural cells, and in maintenance of cell polarity. NCDN is required for the correct localisation of SMN, suggesting they may both be required for formation and transport of trafficking vesicles. NCDN provides a potential therapeutic target for SMA together with, or in place of, those targeting SMN expression.Publisher PDFPeer reviewe

    Maternally derived 15q11.2-q13.1 duplication and H19-DMR hypomethylation in a patient with Silver?Russell syndrome

    Get PDF
    Silver?Russell syndrome (SRS) is a congenital developmental disorder characterized by intrauterine and postnatal growth failure, craniofacial features (including a triangular shaped face and broad forehead), relative macrocephaly, protruding forehead, body asymmetry and feeding difficulties. Hypomethylation of the H19 differentially methylated region (DMR) on chromosome 11p15.5 is the most common cause of the SRS phenotype. We report the first SRS patient with hypomethylation of the H19-DMR and maternally derived 15q11.2-q13.1 duplication. Although her clinical manifestations overlapped with those of previously reported SRS cases, the patient’s intellectual disability and facial dysmorphic features were inconsistent with the SRS phenotype. Methylation analyses, array comparative genomic hybridization, and a FISH analysis revealed the hypomethylation of the H19-DMR and a maternally derived interstitial 5.7?Mb duplication at 15q11.2-q13.1 encompassing the Prader?Willi/Angelman critical region in the patient. On the basis of the genetic and clinical findings in the present and previously reported cases, it is unlikely that the 15q duplication in the patient led to the development of hypomethylation of the H19-DMR and it is reasonable to consider that the characteristic phenotype in the patient was caused by the coexistence of the two (epi)genetic conditions. Further studies are needed to clarify the mechanisms leading to methylation aberrations in SRS

    The Phase Structure of the Gross-Neveu Model with Thirring Interaction at the Next to Leading Order of 1/N Expansion

    Get PDF
    We study the critical behavior of the D (2 < D < 4) dimensional Gross-Neveu model with a Thirring interaction, where a vector-vector type four-fermi interaction is on equal terms with a scalar-scalar type one. By using inversion method up to the next-to-leading order of 1/N expansion, we construct a gauge invariant effective potential. We show the existence of the chiral order phase transition, and determine explicitly the critical surface. It is observed that the critical behavior is mainly controlled by the Gross-Neveu coupling g. The critical surface can be divided into two parts by the surface g = 1 which is the critical coupling in the Gross-Neveu model at the 1/N next-to-leading order, and the form of the critical surface is drastically change at g = 1. Comparison with the Schwinger-Dyson(SD) equation is also discussed. Our result is almost the same as that derived in the SD equation. Especially, in the case of pure Gross-Neveu model, we succeed in deriving exactly the same critical line as the one derived in the SD equation.
    corecore