394 research outputs found

    Residential Mobility During Adolescence: Even Upward Moves Predict High School Dropout

    Get PDF
    Racial and economic segregation have long endured as systemic challenges in U.S. metropolitan areas. To combat the inequalities of segregation, two broad policy approaches have emerged: (1) preservation stresses investment in low-income neighborhoods, and (2) mobility stresses moving households in low-income areas to more affluent areas. Our recent study reveals some possible unintended consequences of the latter approach, particularly for adolescents. We find that moving during adolescence is associated with decreased odds of graduating from high school, even when moving to significantly higher income neighborhoods

    Unravelling morphoea aetiopathogenesis by next-generation sequencing of paired skin biopsies

    Get PDF
    BACKGROUND: Morphoea can have a significant disease burden. Aetiopathogenesis remains poorly understood, with very limited existing genetic studies. Linear morphoea (LM) may follow Blascho's lines of epidermal development, providing potential pathogenic clues. OBJECTIVE: The first objective of this study was to identify the presence of primary somatic epidermal mosaicism in LM. The second objective was tTo explore differential gene expression in morphoea epidermis and dermis to identify potential pathogenic molecular pathways and tissue layer cross-talk. METHODOLOGY: Skin biopsies from paired affected and contralateral unaffected skin were taken from 16 patients with LM. Epidermis and dermis were isolated using a 2-step chemical-physical separation protocol. Whole Genome Sequencing (WGS; n = 4 epidermal) and RNA-seq (n = 5-epidermal, n = 5-dermal) with gene expression analysis via GSEA-MSigDBv6.3 and PANTHER-v14.1 pathway analyses, were performed. RTqPCR and immunohistochemistry were used to replicate key results. RESULTS: Sixteen participants (93.8% female, mean age 27.7 yrs disease-onset) were included. Epidermal WGS identified no single affected gene or SNV. However, many potential disease-relevant pathogenic variants were present, including ADAMTSL1 and ADAMTS16. A highly proliferative, inflammatory and profibrotic epidermis was seen, with significantly-overexpressed TNFα-via-NFkB, TGFβ, IL6/JAKSTAT and IFN-signaling, apoptosis, p53 and KRAS-responses. Upregulated IFI27 and downregulated LAMA4 potentially represent initiating epidermal 'damage' signals and enhanced epidermal-dermal communication. Morphoea dermis exhibited significant profibrotic, B-cell and IFN-signatures, and upregulated morphogenic patterning pathways such as Wnt. CONCLUSION: This study supports the absence of somatic epidermal mosaicism in LM, and identifies potential disease-driving epidermal mechanisms, epidermal-dermal interactions and disease-specific dermal differential-gene-expression in morphoea. We propose a potential molecular narrative for morphoea aetiopathogenesis which could help guide future targeted studies and therapies

    Genetic regulation of pituitary gland development in human and mouse

    Get PDF
    Normal hypothalamopituitary development is closely related to that of the forebrain and is dependent upon a complex genetic cascade of transcription factors and signaling molecules that may be either intrinsic or extrinsic to the developing Rathke’s pouch. These factors dictate organ commitment, cell differentiation, and cell proliferation within the anterior pituitary. Abnormalities in these processes are associated with congenital hypopituitarism, a spectrum of disorders that includes syndromic disorders such as septo-optic dysplasia, combined pituitary hormone deficiencies, and isolated hormone deficiencies, of which the commonest is GH deficiency. The highly variable clinical phenotypes can now in part be explained due to research performed over the last 20 yr, based mainly on naturally occurring and transgenic animal models. Mutations in genes encoding both signaling molecules and transcription factors have been implicated in the etiology of hypopituitarism, with or without other syndromic features, in mice and humans. To date, mutations in known genes account for a small proportion of cases of hypopituitarism in humans. However, these mutations have led to a greater understanding of the genetic interactions that lead to normal pituitary development. This review attempts to describe the complexity of pituitary development in the rodent, with particular emphasis on those factors that, when mutated, are associated with hypopituitarism in humans

    The neurotoxin DSP-4 dysregulates the locus coeruleus-norepinephrine system and recapitulates molecular and behavioral aspects of prodromal neurodegenerative disease

    Get PDF
    The noradrenergic locus coeruleus (LC) is among the earliest sites of tau and α-synuclein pathology in Alzheimer\u27s disease (AD) and Parkinson\u27s disease (PD), respectively. The onset of these pathologies coincides with loss of noradrenergic fibers in LC target regions and the emergence of prodromal symptoms including sleep disturbances and anxiety. Paradoxically, these prodromal symptoms are indicative of a noradrenergic hyperactivity phenotype, rather than the predicted loss of norepinephrine (NE) transmission following LC damage, suggesting the engagement of complex compensatory mechanisms. Because current therapeutic efforts are targeting early disease, interest in the LC has grown, and it is critical to identify the links between pathology and dysfunction. We employed the LC-specific neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4), which preferentially damages LC axons, to model early changes in the LC-NE system pertinent to AD and PD in male and female mice. DSP-4 (two doses of 50 mg/kg, one week apart) induced LC axon degeneration, triggered neuroinflammation and oxidative stress, and reduced tissue NE levels. There was no LC cell death or changes to LC firing, but transcriptomics revealed reduced expression of genes that define noradrenergic identity and other changes relevant to neurodegenerative disease. Despite the dramatic loss of LC fibers, NE turnover and signaling were elevated in terminal regions and were associated with anxiogenic phenotypes in multiple behavioral tests. These results represent a comprehensive analysis of how the LC-NE system responds to axon/terminal damage reminiscent of early AD and PD at the molecular, cellular, systems, and behavioral levels, and provides potential mechanisms underlying prodromal neuropsychiatric symptoms

    Novel missense variants in the RNF213 gene from a European family with Moyamoya disease

    Get PDF
    In this report, we present a European family with six individuals affected with Moyamoya disease (MMD). We detected two novel missense variants in the Moyamoya susceptibility gene RNF213, c.12553A>G (p.(Lys4185Glu)) and c.12562G>A (p.(Ala4188Thr)). Cosegregation of the variants with MMD, as well as a previous report of a variant affecting the same amino acid residue in unrelated MMD patients, supports the role of RNF213 in the pathogenesis of MM

    Role of CD14+ monocyte-derived oxidised mitochondrial DNA in the inflammatory interferon type 1 signature in juvenile dermatomyositis

    Get PDF
    OBJECTIVES: To define the host mechanisms contributing to the pathological interferon (IFN) type 1 signature in Juvenile dermatomyositis (JDM). METHODS: RNA-sequencing was performed on CD4+, CD8+, CD14+ and CD19+ cells sorted from pretreatment and on-treatment JDM (pretreatment n=10, on-treatment n=11) and age/sex-matched child healthy-control (CHC n=4) peripheral blood mononuclear cell (PBMC). Mitochondrial morphology and superoxide were assessed by fluorescence microscopy, cellular metabolism by 13C glucose uptake assays, and oxidised mitochondrial DNA (oxmtDNA) content by dot-blot. Healthy-control PBMC and JDM pretreatment PBMC were cultured with IFN-α, oxmtDNA, cGAS-inhibitor, TLR-9 antagonist and/or n-acetyl cysteine (NAC). IFN-stimulated gene (ISGs) expression was measured by qPCR. Total numbers of patient and controls for functional experiments, JDM n=82, total CHC n=35. RESULTS: Dysregulated mitochondrial-associated gene expression correlated with increased ISG expression in JDM CD14+ monocytes. Altered mitochondrial-associated gene expression was paralleled by altered mitochondrial biology, including 'megamitochondria', cellular metabolism and a decrease in gene expression of superoxide dismutase (SOD)1. This was associated with enhanced production of oxidised mitochondrial (oxmt)DNA. OxmtDNA induced ISG expression in healthy PBMC, which was blocked by targeting oxidative stress and intracellular nucleic acid sensing pathways. Complementary experiments showed that, under in vitro experimental conditions, targeting these pathways via the antioxidant drug NAC, TLR9 antagonist and to a lesser extent cGAS-inhibitor, suppressed ISG expression in pretreatment JDM PBMC. CONCLUSIONS: These results describe a novel pathway where altered mitochondrial biology in JDM CD14+ monocytes lead to oxmtDNA production and stimulates ISG expression. Targeting this pathway has therapeutical potential in JDM and other IFN type 1-driven autoimmune diseases

    Evolution of the POU1F1 transcription factor in mammals: rapid change of the alternatively-spliced β-domain

    Get PDF
    The POU1F1 (Pit-1) transcription factor is important in regulating expression of growth hormone, prolactin and TSH β-subunit, and controlling development of the anterior pituitary cells in which these hormones are produced. POU1F1 is a conserved protein comprising three main domains, an N-terminal transcription activation domain (TAD), a POU-specific domain and a C-terminal homeodomain. Within the TAD, a β-domain can be inserted by alternative splicing, giving an extended 'β-variant' with altered properties. Here sequence data from over 100 species were used to assess the variability of POU1F1 in mammals. This showed that the POU-specific domain and homeodomain are very strongly conserved, and that the TAD is somewhat less conserved, as are linker and hinge regions between these main domains. On the other hand, the β-domain is very variable, apparently evolving at a rate not significantly different from that expected for unconstrained, neutral evolution. In several species stop and/or frameshift mutations within the β domain would prevent expression of the β-variant as a functional protein. In most species expression of the β-variant is low (<5% of total POU1F1 expression). The rate of evolution of POU1F1 in mammals shows little variation, though the lineage leading to dog does show an episode of accelerated change. This comparative genomics study suggests that in most mammalian species POU1F1 variants produced by alternative splicing may have little physiological significance

    Nestin-Cre Mice Are Affected by Hypopituitarism, Which Is Not Due to Significant Activity of the Transgene in the Pituitary Gland

    Get PDF
    Nestin-Cre mice express Cre recombinase under control of the rat nestin promoter and central nervous system (CNS) enhancer. While endogenous Nestin is expressed in some other tissues including the pituitary gland, Nestin-Cre mice induce recombination predominantly in the CNS. For this reason, they have been widely used to explore gene function or cell fate in the latter. Pituitary hormonal deficiencies, or hypopituitarism, are associated with a wide range of symptoms and with a significant morbidity. These can have a neural and/or a pituitary origin as the gland's secretions are controlled by the hypothalamus. We report here that Nestin-Cre mice themselves are affected by mild hypopituitarism. Hence, physiological consequences are expected, especially in combination with defects resulting from Cre mediated deletion of any gene under investigation. To further investigate the origin of this phenotype, we re-examined the activity of the transgene. We compared it with expression of Nestin itself in the context of the hypothalamo-pituitary axis, especially in the light of a recent report showing pituitary Nestin-Cre activity, which contrasts with previous data. Our results disagree with those of this recent study and do not support the claim that Nestin positive cells are present in the pituitary anlagen, the Rathke's pouch (RP). Moreover we did not observe any significant activity in the post-natal pituitary, in agreement with the initial report

    Pathogenic variants in the human m(6)A reader YTHDC2 are associated with primary ovarian insufficiency

    Get PDF
    Primary ovarian insufficiency (POI) affects 1% of women and carries significant medical and psychosocial sequelae. Approximately 10% of POI has a defined genetic cause, with most implicated genes relating to biological processes involved in early fetal ovary development and function. Recently, Ythdc2, an RNA helicase and N6-methyladenosine reader, has emerged as a regulator of meiosis in mice. Here, we describe homozygous pathogenic variants in YTHDC2 in 3 women with early-onset POI from 2 families: C. 2567C>G, p.P856R in the helicase-associated (HA2) domain and c.1129G>T, p.E377*. We demonstrated that YTHDC2 is expressed in the developing human fetal ovary and is upregulated in meiotic germ cells, together with related meiosisassociated factors. The p.P856R variant resulted in a less flexible protein that likely disrupted downstream conformational kinetics of the HA2 domain, whereas the p.E377*variant truncated the helicase core. Taken together, our results reveal that YTHDC2 is a key regulator of meiosis in humans and pathogenic variants within this gene are associated with POI
    corecore