856 research outputs found

    Stochastic resonance between dissipative structures in a bistable noise-sustained dynamics

    Get PDF
    We study an extended system that without noise shows a monostable dynamics, but when submitted to an adequate multiplicative noise, an effective bistable dynamics arise. The stochastic resonance between the attractors of the \textit{noise-sustained dynamics} is investigated theoretically in terms of a two-state approximation. The knowledge of the exact nonequilibrium potential allows us to obtain the output signal-to-noise ratio. Its maximum is predicted in the symmetric case for which both attractors have the same nonequilibrium potential value.Comment: RevTex, 13 pages, 6 figures, accepted in Physical Review

    FOCAD loss impacts microtubule assembly, G2/M progression and patient survival in astrocytic gliomas

    Full text link
    In search of novel genes associated with glioma pathogenesis, we have previously shown frequent deletions of the KIAA1797/FOCAD gene in malignant gliomas, and a tumor suppressor function of the encoded focadhesin impacting proliferation and migration of glioma cells in vitro and in vivo. Here, we examined an association of reduced FOCAD gene copy number with overall survival of patients with astrocytic gliomas, and addressed the molecular mechanisms that govern the suppressive effect of focadhesin on glioma growth. FOCAD loss was associated with inferior outcome in patients with isocitrate dehydrogenase 1 or 2 (IDH)-mutant astrocytic gliomas of WHO grades II-IV. Multivariate analysis considering age at diagnosis as well as IDH mutation, MGMT promoter methylation, and CDKN2A/B homozygous deletion status confirmed reduced FOCAD gene copy number as a prognostic factor for overall survival. Using a yeast two-hybrid screen and pull-down assays, tubulin beta-6 and other tubulin family members were identified as novel focadhesin-interacting partners. Tubulins and focadhesin co-localized to centrosomes where focadhesin was enriched in proximity to centrioles. Focadhesin was recruited to microtubules via its interaction partner SLAIN motif family member 2 and reduced microtubule assembly rates, possibly explaining the focadhesin-dependent decrease in cell migration. During the cell cycle, focadhesin levels peaked in G2/M phase and influenced time-dependent G2/M progression potentially via polo like kinase 1 phosphorylation, providing a possible explanation for focadhesin-dependent cell growth reduction. We conclude that FOCAD loss may promote biological aggressiveness and worsen clinical outcome of diffuse astrocytic gliomas by enhancing microtubule assembly and accelerating G2/M phase progression

    Enhancement of Stochastic Resonance in distributed systems due to a selective coupling

    Full text link
    Recent massive numerical simulations have shown that the response of a "stochastic resonator" is enhanced as a consequence of spatial coupling. Similar results have been analytically obtained in a reaction-diffusion model, using "nonequilibrium potential" techniques. We now consider a field-dependent diffusivity and show that the "selectivity" of the coupling is more efficient for achieving stochastic-resonance enhancement than its overall value in the constant-diffusivity case.Comment: 10 pgs (RevTex), 4 figures, submitted to Phys.Rev.Let

    First direct detection of an exoplanet by optical interferometry; Astrometry and K-band spectroscopy of HR8799 e

    Get PDF
    To date, infrared interferometry at best achieved contrast ratios of a few times 10410^{-4} on bright targets. GRAVITY, with its dual-field mode, is now capable of high contrast observations, enabling the direct observation of exoplanets. We demonstrate the technique on HR8799, a young planetary system composed of four known giant exoplanets. We used the GRAVITY fringe tracker to lock the fringes on the central star, and integrated off-axis on the HR8799e planet situated at 390 mas from the star. Data reduction included post-processing to remove the flux leaking from the central star and to extract the coherent flux of the planet. The inferred K band spectrum of the planet has a spectral resolution of 500. We also derive the astrometric position of the planet relative to the star with a precision on the order of 100μ\,\muas. The GRAVITY astrometric measurement disfavors perfectly coplanar stable orbital solutions. A small adjustment of a few degrees to the orbital inclination of HR 8799 e can resolve the tension, implying that the orbits are close to, but not strictly coplanar. The spectrum, with a signal-to-noise ratio of 5\approx 5 per spectral channel, is compatible with a late-type L brown dwarf. Using Exo-REM synthetic spectra, we derive a temperature of 1150±501150\pm50\,K and a surface gravity of 104.3±0.310^{4.3\pm0.3}\,cm/s2^{2}. This corresponds to a radius of 1.170.11+0.13RJup1.17^{+0.13}_{-0.11}\,R_{\rm Jup} and a mass of 104+7MJup10^{+7}_{-4}\,M_{\rm Jup}, which is an independent confirmation of mass estimates from evolutionary models. Our results demonstrate the power of interferometry for the direct detection and spectroscopic study of exoplanets at close angular separations from their stars.Comment: published in A&

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    IT-adoption and the interaction of task, technology and individuals: a fit framework and a case study

    Get PDF
    BACKGROUND: Factors of IT adoption have largely been discussed in the literature. However, existing frameworks (such as TAM or TTF) are failing to include one important aspect, the interaction between user and task. METHOD: Based on a literature study and a case study, we developed the FITT framework to help analyse the socio-organisational-technical factors that influence IT adoption in a health care setting. RESULTS: Our FITT framework ("Fit between Individuals, Task and Technology") is based on the idea that IT adoption in a clinical environment depends on the fit between the attributes of the individual users (e.g. computer anxiety, motivation), attributes of the technology (e.g. usability, functionality, performance), and attributes of the clinical tasks and processes (e.g. organisation, task complexity). We used this framework in the retrospective analysis of a three-year case study, describing the adoption of a nursing documentation system in various departments in a German University Hospital. We will show how the FITT framework helped analyzing the process of IT adoption during an IT implementation: we were able to describe every found IT adoption problem with regard to the three fit dimensions, and any intervention on the fit can be described with regard to the three objects of the FITT framework (individual, task, technology). We also derive facilitators and barriers to IT adoption of clinical information systems. CONCLUSION: This work should support a better understanding of the reasons for IT adoption failures and therefore enable better prepared and more successful IT introduction projects. We will discuss, however, that from a more epistemological point of view, it may be difficult or even impossible to analyse the complex and interacting factors that predict success or failure of IT projects in a socio-technical environment

    Sensory Integration Regulating Male Courtship Behavior in Drosophila

    Get PDF
    The courtship behavior of Drosophila melanogaster serves as an excellent model system to study how complex innate behaviors are controlled by the nervous system. To understand how the underlying neural network controls this behavior, it is not sufficient to unravel its architecture, but also crucial to decipher its logic. By systematic analysis of how variations in sensory inputs alter the courtship behavior of a naïve male in the single-choice courtship paradigm, we derive a model describing the logic of the network that integrates the various sensory stimuli and elicits this complex innate behavior. This approach and the model derived from it distinguish (i) between initiation and maintenance of courtship, (ii) between courtship in daylight and in the dark, where the male uses a scanning strategy to retrieve the decamping female, and (iii) between courtship towards receptive virgin females and mature males. The last distinction demonstrates that sexual orientation of the courting male, in the absence of discriminatory visual cues, depends on the integration of gustatory and behavioral feedback inputs, but not on olfactory signals from the courted animal. The model will complement studies on the connectivity and intrinsic properties of the neurons forming the circuitry that regulates male courtship behavior

    Polarimetry and Astrometry of NIR Flares as Event Horizon Scale, Dynamical Probes for the Mass of Sgr A*

    Full text link
    We present new astrometric and polarimetric observations of flares from Sgr A* obtained with GRAVITY, the near-infrared interferometer at ESO's Very Large Telescope Interferometer (VLTI), bringing the total sample of well-covered astrometric flares to four and polarimetric ones to six, where we have for two flares good coverage in both domains. All astrometric flares show clockwise motion in the plane of the sky with a period of around an hour, and the polarization vector rotates by one full loop in the same time. Given the apparent similarities of the flares, we present a common fit, taking into account the absence of strong Doppler boosting peaks in the light curves and the EHT-measured geometry. Our results are consistent with and significantly strengthen our model from 2018: We find that a) the combination of polarization period and measured flare radius of around nine gravitational radii (9Rg1.5RISCO9 R_g \approx 1.5 R_{ISCO}, innermost stable circular orbit) is consistent with Keplerian orbital motion of hot spots in the innermost accretion zone. The mass inside the flares' radius is consistent with the 4.297×106  M4.297 \times 10^6 \; \text{M}_\odot measured from stellar orbits at several thousand RgR_g. This finding and the diameter of the millimeter shadow of Sgr A* thus support a single black hole model. Further, b) the magnetic field configuration is predominantly poloidal (vertical), and the flares' orbital plane has a moderate inclination with respect to the plane of the sky, as shown by the non-detection of Doppler-boosting and the fact that we observe one polarization loop per astrometric loop. Moreover, c) both the position angle on sky and the required magnetic field strength suggest that the accretion flow is fueled and controlled by the winds of the massive, young stars of the clockwise stellar disk 1-5 arcsec from Sgr A*, in agreement with recent simulations.Comment: 10 pages, 12 figures. Submitted to A&
    corecore