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ABSTRACT

Aims. To date, infrared interferometry at best achieved contrast ratios of a few times 10−4 on bright targets. GRAVITY, with its dual-field mode,
is now capable of high contrast observations, enabling the direct observation of exoplanets. We demonstrate the technique on HR 8799, a young
planetary system composed of four known giant exoplanets.
Methods. We used the GRAVITY fringe tracker to lock the fringes on the central star, and integrated off-axis on the HR 8799 e planet situated at
390 mas from the star. Data reduction included post-processing to remove the flux leaking from the central star and to extract the coherent flux
of the planet. The inferred K band spectrum of the planet has a spectral resolution of 500. We also derive the astrometric position of the planet
relative to the star with a precision on the order of 100 µas.
Results. The GRAVITY astrometric measurement disfavors perfectly coplanar stable orbital solutions. A small adjustment of a few degrees to
the orbital inclination of HR 8799 e can resolve the tension, implying that the orbits are close to, but not strictly coplanar. The spectrum, with a
signal-to-noise ratio of ≈ 5 per spectral channel, is compatible with a late-type L brown dwarf. Using Exo-REM synthetic spectra, we derive a
temperature of 1150 ± 50 K and a surface gravity of 104.3±0.3 cm/s2. This corresponds to a radius of 1.17+0.13

−0.11 RJup and a mass of 10+7
−4 MJup, which

is an independent confirmation of mass estimates from evolutionary models. Our results demonstrate the power of interferometry for the direct
detection and spectroscopic study of exoplanets at close angular separations from their stars.

Key words. Exoplanets – Instrumentation: interferometers – Techniques: high angular resolution

1. Introduction

Obtaining accurate orbits, masses, and atmospheric spectra of
directly imaged planets is key to determining their natures and,
ultimately, their formation histories. Here we demonstrate the
power of a new technique, using optical interferometry, to obtain
this information for an exoplanet as close as 390 mas to its parent
star.

Because they are better known, the spectra of brown dwarfs
(BD) are often used as references to classify the young exoplanet
atmospheres. More precisely, the L-T transition is an important
observable for understanding the evolution of atmospheres as a
function of temperature. At lower temperatures (<1200 K), opac-
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ity changes due to the transition of CO to methane in chemi-
cal equilibrium, and the likely disappearance of silicate and iron
clouds under the photosphere, makes the spectral appearance of
T-type BDs bluer. On the contrary, young giant exoplanets of
temperature ≈ 1000 K still have redder near-infrared colors typi-
cal of late-L BDs. This is explained by the relatively low surface
gravity (g ≤ 104 cm/s2), and hence larger scale heights, in plan-
etary atmospheres. However, the exact cause (cloud properties
and/or vertical chemical mixing) is not properly understood (Al-
lard et al. 2012). Once the problem of cloud formation and chem-
ical processes are solved (Helling et al. 2014; Moses et al. 2016),
the determination of the molecular composition of exoplanet at-
mospheres will become a crucial tool toward understanding the
formation process of planets: the atomic ratio or even isotope
ratio will change depending on the conditions of formation. For
example, the C-to-O ratio in the gas of a protoplanetary disk
is predicted to increase outwards past the H2O (≈ 140 K), CO2
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Fig. 1. Colored lines are HR 8799 e visibilities |Vplanet|, as defined by Eq. (1), obtained from the ratio between the coherent flux observed on the
planet and on the star. The underlying dotted colored lines correspond to the errors estimated by the pipeline. The theoretical stellar visibility
corresponds to the black dashed line (uniform disk of diameter 0.342 mas). The upper horizontal dotted black line corresponds to the observed
incoherent flux (stellar flux leaking in the planet’s field). The lower horizontal dotted black line corresponds to the theoretical visibility of a planet
10.7 magnitudes fainter than the star. (Right inset) Coverage of the spatial frequency plane, east is to the right. The arrow indicates the direction of
the planet situated to the northwest of the star.

(≈ 50 K), or even CO (≈ 20 K) ice-lines (Öberg et al. 2011):
C/O in the planet atmosphere should therefore change depend-
ing on where in a disk planets form and how much gas and how
many planetesimals they accrete (Mordasini et al. 2016). Simi-
larly, the D-to-H ratio in planets can be linked to the accretion of
icy bodies (Feuchtgruber et al. 2013) and can be seen in molec-
ular absorption spectra (Mollière & Snellen 2018).

The study of cloud properties and composition requires spec-
tral information, which can currently only be obtained by two
means: transit spectroscopy or thermal emission spectroscopy.
Transit spectroscopy is best for characterizing planets in close
orbit around the host star, with puffy (inflated) irradiated atmo-
spheres (Crossfield 2015, and references herein). Thermal emis-
sion spectroscopy is more adapted to young, self-luminous plan-
ets in orbits with a semimajor axis of a few tens of AU around
the host star. Young planets are warm as they still possess excess
entropy tracing back to the formation process (e.g., Marleau &
Cumming 2014). The difficulty with emission spectroscopy is
that a planet’s signal is contaminated by stellar photons, which
vary in time with changing observing conditions, resulting in a
spatially and spectrally varying speckle pattern. One of the solu-
tions for emission spectroscopy is to go to space to benefit from
a stable point spread function. Another is to use high contrast
and high angular resolution observations on 8 m to 10 m class
telescopes from the ground, and to deconvolve the image to re-
move the speckles by using spectro-spatial correlations. This is
typically done using integral field spectroscopy and techniques
like spectral differential imaging (Rameau et al. 2015) or angular
differential imaging (Marois et al. 2006).

With the technique presented in this paper, we go one step
further by using the resolving power of the ≈ 100-meter base-
lines offered by optical interferometry to distinguish between the
coherent flux originating from the star and from the planet. In
Section 2 we present the GRAVITY observation of HR 8799 e
and the data reduction. HR 8799 is a bright (K= 5.24 mag),

Table 1. Observing log (data taken on 2018-Aug-28)

Target UT Time DIT NDIT Seeing τ0 Airmass par. angle
Planet 04:33:59 100 s 10 0.8” 4.9 ms 1.48 -164.3◦
Star 04:51:27 1 s 50 0.5” 7.1 ms 1.45 -169.6◦
Sky 04:52:56 1 s 50 0.5” 6.7 ms 1.45 -170.0◦
Planet 04:54:35 100 s 10 0.6” 6.2 ms 1.45 -170.6◦
Planet 05:11:55 100 s 10 0.6” 6.2 ms 1.44 -176.0◦
Sky 05:29:27 100 s 10 0.4” 8.5 ms 1.44 178.5◦
Planet 05:46:56 100 s 10 0.5” 6.3 ms 1.44 172.9◦
Planet 06:07:13 100 s 10 0.6” 5.6 ms 1.47 166.7◦
Star 06:24:42 1 s 50 0.8” 4.2 ms 1.50 161.5◦
Sky 06:26:10 1 s 50 0.8” 3.9 ms 1.50 161.1◦
Planet 06:28:04 100 s 10 0.7” 4.9 ms 1.50 160.5◦
Planet 06:45:25 100 s 10 0.7” 6.2 ms 1.55 155.7◦
Sky 07:04:02 100 s 10 1.0” 3.6 ms 1.62 150.9◦

Notes: τ0 is the coherence time in the visual (500 nm); par. angle is the parallactic angle.

nearby (d = 39.4 ± 0.1 pc) A5 star. We know that at least four
planets are orbiting the star (the first three discovered by Marois
et al. 2008). In Section 3 we present a new astrometric measure-
ment of the fourth planet (K = 15.9 mag), discovered in 2010 by
Marois et al. (2010) at 368 ± 9 mas from its host star. The youth
of the star (≈ 30 Myr, member of the Columba Association Malo
et al. 2013), implies that the planet is still warm from its initial
gravitational energy. In Section 4 we use the K-band spectra and
photometry to constrain its spectral type, temperature, and ra-
dius. Finally, in Section 5, we summarize our results and briefly
address the prospects of the interferometric technique.

2. Observations and data reduction

The observations were obtained with the VLTI using the four
8-meter Unit Telescopes and the GRAVITY instrument (Eisen-
hauer et al. 2011; Gravity Collaboration et al. 2017) on 28 Au-
gust 2018. GRAVITY can observe two objects located in the
VLTI field of view by simultaneously injecting, at each tele-
scope coudé focus, the light of each object into a separate single-
mode fiber. The two fibers have an effective field of view equal
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to ≈ 60 mas, the K-band diffraction limit of a single telescope
(Pfuhl et al. 2014). Each object is thus interferometrically ob-
served separately, but an ultraprecise laser telemetry constantly
monitors the differential optical path between the two objects.
The first fiber of GRAVITY was placed on the star for fringe
tracking (Lacour et al. 2019) and phase referencing. The sec-
ond fiber was centered sequentially on the planet and on the star,
situated at ≈ 390 mas from each other. This second fiber fed the
science spectrometer configured at medium resolution (R= 500).
Observations of the star were used to calibrate the observation of
the planet. Because of the faintness of the planet, a detector in-
tegration time (DIT) of 100 s was required. As the star is more
than 10 mag brighter than the planet in K band, a DIT of 1 s was
sufficient for the science channel observations of the star. Seeing
conditions were average to good. The log of the observations is
presented in Table 1, where exposures on the planet are shown
along the sky and stellar calibration exposures.

The frequency plane and the amplitude of the planet’s vis-
ibilities are presented in Fig. 1. The colored dotted lines below
the visibilities are the errors estimated by the pipeline. The mean
S/N per spectral channel is ≈ 5. The detailed data reduction pro-
cedure will be presented by Nowak et al. (in preparation). The
main steps are as follows:
1. Extraction of the coherent flux (the VISDATA) for individual

files using the ESO GRAVITY pipeline1;
2. Derivation of the position of the planet with respect to the

star by fitting the coherent flux with models of the coherent
flux from the star and from the planet;

3. Removal of the coherent flux of stellar origin by linear de-
composition on the models of step 2. This step assumes the
position of the planet from step 2;

4. Normalization in phase and amplitude of the remaining co-
herent flux by the coherent flux observed on the star multi-
plied by the theoretical visibility function of the star. This
gives the complex visibility of the planet

Vplanet =
VISDATAplanet

VISDATA∗star
×

2J1(πθstaru)
πθstaru

, (1)

where J1 is a Bessel function of the first kind, of order 1; θstar
is the stellar diameter; and u is the spatial frequency in rad−1.
The amplitude of Vplanet is plotted as solid curves in Fig. 1;

5. Retrieval of the spectrum of the planet by assuming a diam-
eter for the planet and a synthetic stellar spectrum:

Fplanet =
|Vplanet|Fstar

2J1(πθplanetu)/πθplanetu
. (2)

The stellar diameter is assumed to be θstar = 0.342 ± 0.008 mas
(Baines et al. 2012) and is plotted as the black dashed line in
Fig. 1. The planet diameter is assumed to be negligible at the
resolution of the interferometer. For the star, we used a BT-
NextGen model (T = 7400 K, [Fe/H]=-0.5, and log(g) = 4.0)
from Hauschildt et al. (1999), scaled for a K-band flux of
3.191 × 10−12 Wm−2µm−1.

The upper dotted black line corresponds to the average resid-
ual flux from the star entering the science spectrometer. The
lower dotted black line corresponds to the theoretical flux of an
unresolved source with a 10.7 difference in magnitude.

3. Relative astrometry

In the same way as we can disentangle the complex coherent
energy from the star and the planet, it is also possible to fit
1 The pipeline in its version 1.1.2 is currently available at https://
www.eso.org/sci/software/pipelines/gravity.

Table 2. Astrometry on HR 8799 e

MJD ∆RA ∆Dec Covariance
(mas) (mas) (mas2)

58358.190 -357.63 163.59
58358.205 -357.68 163.63
58358.217 -357.54 163.05
58358.241 -357.58 163.28
58358.255 -357.61 163.12
58358.269 -357.62 163.22
58358.282 -357.80 163.41
Global −357.64 ± 0.07 163.34 ± 0.18 -0.00668
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Fig. 2. Keplerian orbit fit of HR 8799 e. The black point is the GRAV-
ITY measurement, and the gray points are from previous astrometry
(Konopacky et al. 2016; Wang et al. 2018b). The yellow lines are 250
random draws from the posterior. The orbit determination is currently
limited by the mas-level astrometry of the previous epochs (Top inset).
Image magnified by ∼200x to display the uncertainties in the GRAV-
ITY astrometry. The plotted error bars are rotated to be aligned with the
principal axes of the error ellipse. (Bottom inset) Image magnified by
∼2x to display the uncertainties in the previous measurements.

the wavelength dependence of the phase, which is tantamount
to measuring a separation. Each fit, for each baseline, gives a
χ2 minimum for an optimal optical path difference (OPD). This
OPD corresponds to an angular separation projected in the di-
rection of the baseline vector. Several of these optimal OPDs are
necessary to derive a position. By combining all the baselines
together, we can use each exposure file separately, giving the
seven optimal positions listed in Table 2. The global minimum
is at ∆RA = −357.64± 0.07 mas and ∆Dec = 163.34± 0.18 mas
with highly elliptical uncertainty (covariance of -0.00668 mas2).
Along the longest baseline (position angle, PA=78 degrees) the
1σ uncertainty is 55 µas. Orthogonal to that baseline (PA= 168
degrees) the uncertainty is 190 µas. The plate scale and true north
error is negligible at that level (> 50 µas) as the spatial frequen-
cies are defined by the physical position of the telescopes. At-
mospheric dispersion is also negligible. A detailed description
of the error terms of interferometric astrometry is presented in
Lacour et al. (2014).

As this astrometry is an order of magnitude more precise
than the best measurements made by direct imaging instru-
ments (Wang et al. 2018b), we investigate the orbital constraints
provided by this datapoint. We fit a single Keplerian orbit by
combining this measurement with the astrometry reported in
Konopacky et al. (2016) and Wang et al. (2018b). Given the
assymetry in the GRAVITY measurement, we fit for the loca-
tion of the planet at the GRAVITY epoch in a rotated frame
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Fig. 3. GRAVITY K band spectrum of HR8799 e at spectral resolution 500 (gray points). The red curve is the X-SHOOTER spectrum of the brown
dwarf Luhman 16 A from Lodieu et al. (2015), smoothed to the GRAVITY resolution. The reduced χ2

red is 2.4 (over 236 degrees of freedom). The
orange curve is the best fit of the Exo-REM models from Charnay et al. (2018). The reduced χ2

red is 2.7. The dashed curve is the K-band GPI
spectrum from Greenbaum et al. (2018). The square dots are the SPHERE photometry from Zurlo et al. (2016).

that is aligned with the two principal axes of the error ellipse
(top inset of Fig. 2). We use the parallel-tempered Markov chain
Monte Carlo sampler (Foreman-Mackey et al. 2013; Vousden
et al. 2016) in the orbit fitting code orbitize (Blunt et al. 2019)
to estimate the orbital parameters and find a semimajor axis of
16.4+2.1

−1.1 AU, an eccentricity of 0.15± 0.08, and an inclination of
25◦ ± 8◦. A single 100 µas precision point is able to significantly
constrain the position of the planet at the epoch of observation,
but the determination of the planet’s velocity, acceleration, and
orbital properties are still dominated by the mas-level uncertain-
ties in the previous astrometry. We therefore defer a thorough
dynamical study to a time when multi-epoch orbital monitoring
of the planet with VLTI/GRAVITY has been obtained.

We can also compare the location of the planet measured
by GRAVITY with the ∆RA = −352.6+3.1

−2.6 mas and ∆Dec =
−157.9 ± 1.8 mas predicted by the dynamically stable coplanar
solutions from Wang et al. (2018b). The positions are inconsis-
tent by 5 mas in both axes and none of the 9792 stable copla-
nar orbits are consistent with our measurement at the 3σ level.
With this single astrometric point, we are therefore able to disfa-
vor dynamically stable configurations in which the four planets
are perfectly coplanar. Changing the inclination of HR 8799 e
by ≈ −2◦ accounts for this 5 mas difference, and Wang et al.
(2018b) did find 14 stable non-coplanar orbits with mutual in-
clinations of less 8◦ out of 20 million trials. We note that given
the uncertainties in the orbital planes of the other three planets,
we cannot pinpoint the mutual inclinations of the planets in this
simple analysis. Continued monitoring of the orbit with GRAV-
ITY can further constrain the planet’s orbital elements, allowing
a search for dynamically stable non-coplanar orbital solutions to
be computationally tractable and providing more accurate con-
straints on the masses of the multiple planets.

4. Atmosphere of HR 8799 e

The GRAVITY spectrum of HR 8799 e was obtained by multi-
plying the visibility of the planet with the theoretical spectrum of
the star. This is following Eq. (2) and assuming θplanet = 0. The
resulting spectrum is represented as the gray points in Fig. 3.
The CO-band head at 2.29 µm is the most prominent feature. As
already mentioned by Konopacky et al. (2013) and Wang et al.
(2018a) for HR8799 c, no clear CH4 absorption is seen, in agree-
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Fig. 4. Reduced χ2 as a function of effective temperature and surface
gravity from a grid of Exo-REM models (Charnay et al. 2018). The yel-
low contours correspond to the 5σ error, indicating a valley of possible
temperatures between 1100 and 1200 K. The vertical lines correspond
to the planet’s radius from the model K-band luminosity assuming a
distance of 39.4 pc.

ment with a typical L-type BD spectrum. Using H and K band
GPI spectra, Greenbaum et al. (2018) obtained a best fit with the
spectrum of the brown dwarf WISE J1049-5319A (also called
Luhman 16 A from Luhman 2013) of spectral type L7.5. The
fit is equally good with the GRAVITY spectrum, and gives a re-
duced χ2

red of 2.4.

We fitted the catalog of BD spectra from the Montreal li-
brary (Gagné et al. 2015; Robert et al. 2016) to try to narrow
down the spectral type from K-band spectroscopy only. With a
reduced χ2 of 2.4, the best fit indicates a spectral type close to L7
BD, in agreement with Bonnefoy et al. (2016) and Greenbaum
et al. (2018). A T-type BD spectrum is clearly ruled out. The
reduced χ2 increases to 3 for spectral types ≈L4, which is signif-
icant with 230 degrees of freedom. Similarly, we fitted a grid of
BT-Settl 2014 synthetic spectra (Baraffe et al. 2015) to derive a
temperature and a surface density. The best fit was obtained for
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a temperature of 1400 K and a surface gravity of 104 cm/s2. This
corresponds to a planetary radius of 0.8 RJup.

This radius being incompatible with evolutionary models,
we turned to the Exo-REM model (Baudino et al. 2015; Char-
nay et al. 2018). We found that values of 1150 ± 50 K and
log(g)= 4.3 ± 0.3 (error bars 3σ) correctly reflect the spectrum
in the K band (Fig. 4). According to the luminosity estimated by
the model, it corresponds to a radius of R = 1.17+0.13

−0.11 RJup. This
gives a model-dependent estimate of the mass of HR 8799 e of
10+7
−4 MJup. Simulations with Exo-REM predict that the LT tran-

sition occurs at a lower effective temperature for exoplanets than
for field brown dwarfs, due to effects of pressure on the forma-
tion of iron and silicate clouds. This trend is apparent in Fig. 4,
where the LT transition corresponds to a sudden increase in χ2

and occurs at an effective temperature just 100 K lower than our
best fit.

5. Summary and conclusions

Interferometric astrometry, an order of magnitude more accu-
rate than direct imaging, opens new possibilities to study the dy-
namics of planetary systems. With just a single data point from
GRAVITY, we can strongly disfavor perfectly coplanar stable or-
bits for the HR 8799 planets. As the dynamics probe the masses,
formation history, and the future system architecture, interfer-
ometric orbital monitoring at the 10-100 µas level can signifi-
cantly improve our understanding of directly imaged systems.

Based on the K-band spectrum, we confirm a spectral type
(≈L7), equivalent to a higher temperature BD. The discrep-
ancy between spectral type (T> 1400 K; Schweitzer et al. 2002)
and effective temperature derived from wide-band photometry
(T< 1200 K) can be solved by using models taking the lower sur-
face gravity into account. It is interesting to note that the GRAV-
ITY K-band spectrum does constrain this low surface gravity,
as shown by the residual map in Fig. 4. We determine a surface
gravity compatible with a 10 MJup planet.

The interferometric technique brings unique possibilities to
characterize exoplanets. With the technique described here, any
planet with Kmag / 19, ∆Kmag / 11, and separation ' 100 mas
is, in theory, observable with GRAVITY. The numbers are still to
be refined, but it would mean that GRAVITY could observe most
of the known imaged planets, and maybe in the near future plan-
ets detected by radial velocity. Futhermore, the good normal-
ization of the continuum spectrum offers new ways to measure
the column density of molecules without the need for smoothing
and cross-correlation (e.g., Snellen et al. 2014; Konopacky et al.
2013). Finally, the idea that an interferometer can resolve the
surface of exoplanets, giving radius and resolving clouds patch-
iness, is now becoming more plausible. However, it would re-
quire an interferometer with baselines on the order of 10 km.
This could be a goal for ESO after ELT construction.
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