535 research outputs found

    Secrets in the Library: Protected Scholarship and Professional Identity in Late Babylonian Uruk

    Get PDF
    Injunctions to secrecy in the colophons of scholarly cuneiform tablets offer potential insights into the classification and protection of knowledge in Mesopotamia. However, most models of a body of “secret knowledge” defined by the so-called “Geheimwissen colophons” have found it difficult to account for a seemingly disparate corpus of protected texts. This study argues first for an expanded definition of intellectual protection, which leads to a larger corpus of protected texts. Through a case study of Late Babylonian colophons from Uruk, it is suggested that there is a strong correlation between texts related to the professional specialism of the tablet owner, and the occurrence of protective formulae in the colophon. This implies that it is fruitful to consider “secret knowledge” less as an abstracted corpus of esoteric texts and more as a mutable categorisation strongly linked to professional and individual intellectual identity

    The Atmospheric Signatures of Super-Earths: How to Distinguish Between Hydrogen-Rich and Hydrogen-Poor Atmospheres

    Full text link
    Extrasolar super-Earths (1-10 M_{\earth}) are likely to exist with a wide range of atmospheres. Some super-Earths may be able to retain massive hydrogen-rich atmospheres. Others might never accumulate hydrogen or experience significant escape of lightweight elements, resulting in atmospheres more like those of the terrestrial planets in our Solar System. We examine how an observer could differentiate between hydrogen-rich and hydrogen-poor atmospheres by modeling super-Earth emission and transmission spectra, and we find that discrimination is possible by observing the transmission spectrum alone. An Earth-like atmosphere, composed of mostly heavy elements and molecules, will have a very weak transmission signal due to its small atmospheric scale height (since the scale height is inversely proportional to molecular weight). On the other hand, a large hydrogen-rich atmosphere reveals a relatively large transmission signal. The super Earth emission spectrum can additionally contrain the atmospheric composition and temperature structure. Super-Earths with massive hydrogen atmospheres will reveal strong spectral features due to water, whereas those that have lost most of their hydrogen (and have no liquid ocean) will be marked by CO2_2 features and a lack of H2_2O. We apply our study specifically to the low-mass planet orbiting an M star, Gl 581c (MsiniM sin i = 5 M_{\earth}), although our conclusions are relevant for super-Earths in general. The ability to distinguish hydrogen-rich atmospheres might be essential for interpreting mass and radius observations of planets in the transition between rocky super-Earths and Neptune-like planets.Comment: 28 pages, 6 figures, accepted to Ap

    The GJ 436 System: Directly Determined Astrophysical Parameters of an M-Dwarf and Implications for the Transiting Hot Neptune

    Get PDF
    The late-type dwarf GJ 436 is known to host a transiting Neptune-mass planet in a 2.6-day orbit. We present results of our interferometric measurements to directly determine the stellar diameter (R⋆=0.455±0.018R⊙R_{\star} = 0.455 \pm 0.018 R_{\odot}) and effective temperature (TEFF=3416±54T_{\rm EFF} = 3416 \pm 54 K). We combine our stellar parameters with literature time-series data, which allows us to calculate physical and orbital system parameters, including GJ 436's stellar mass (M⋆=0.507−0.062+0.071M⊙M_{\star} = 0.507^{+ 0.071}_{- 0.062} M_{\odot}) and density (ρ∗=5.37−0.27+0.30ρ⊙\rho_* = 5.37^{+ 0.30}_{- 0.27} \rho_\odot), planetary radius (Rp=0.369−0.015+0.015RJupiterR_{p} = 0.369^{+ 0.015}_{- 0.015} R_{Jupiter}), planetary mass (Mp=0.078−0.008+0.007MJupiterM_{p} = 0.078^{+ 0.007}_{- 0.008} M_{Jupiter}), implying a mean planetary density of ρp=1.55−0.10+0.12ρJupiter\rho_{p} = 1.55^{+ 0.12}_{- 0.10} \rho_{Jupiter}. These values are generally in good agreement with previous literature estimates based on assumed stellar mass and photometric light curve fitting. Finally, we examine the expected phase curves of the hot Neptune GJ 436b, based on various assumptions concerning the efficiency of energy redistribution in the planetary atmosphere, and find that it could be constrained with {\it Spitzer} monitoring observations.Comment: 10 pages, 4 tables, 9 figures; accepted for publication in ApJ; incorporated referee's comments and associated change

    Removing the Microlensing Blending-Parallax Degeneracy Using Source Variability

    Full text link
    Microlensing event MACHO 97-SMC-1 is one of the rare microlensing events for which the source is a variable star, simply because most variable stars are systematically eliminated from microlensing studies. Using observational data for this event, we show that the intrinsic variability of a microlensed star is a powerful tool to constrain the nature of the lens by breaking the degeneracy between the microlens parallax and the blended light. We also present a statistical test for discriminating the location of the lens based on the \chi^2 contours of the vector \Lambda, the inverse of the projected velocity. We find that while SMC self lensing is somewhat favored over halo lensing, neither location can be ruled out with good confidence.Comment: 15 text pages + 2 tables + 7 figures. Published in the Astrophysical Journa

    Double-blind test program for astrometric planet detection with Gaia

    Full text link
    We use detailed simulations of the Gaia observations of synthetic planetary systems and develop and utilize independent software codes in double-blind mode to analyze the data, including statistical tools for planet detection and different algorithms for single and multiple Keplerian orbit fitting that use no a priori knowledge of the true orbital parameters of the systems. 1) Planets with astrometric signatures α≃3\alpha\simeq 3 times the single-measurement error σψ\sigma_\psi and period P≀5P\leq 5 yr can be detected reliably, with a very small number of false positives. 2) At twice the detection limit, uncertainties in orbital parameters and masses are typically 1515%-20%. 3) Over 70% of two-planet systems with well-separated periods in the range 0.2≀P≀90.2\leq P\leq 9 yr, 2≀α/σψ≀502\leq\alpha/\sigma_\psi\leq 50, and eccentricity e≀0.6e\leq 0.6 are correctly identified. 4) Favorable orbital configurations have orbital elements measured to better than 10% accuracy >90> 90% of the time, and the value of the mutual inclination angle determined with uncertainties \leq 10^{\degr}. 5) Finally, uncertainties obtained from the fitting procedures are a good estimate of the actual errors. Extrapolating from the present-day statistical properties of the exoplanet sample, the results imply that a Gaia with σψ\sigma_\psi = 8 ÎŒ\muas, in its unbiased and complete magnitude-limited census of planetary systems, will measure several thousand giant planets out to 3-4 AUs from stars within 200 pc, and will characterize hundreds of multiple-planet systems, including meaningful coplanarity tests. Finally, we put Gaia into context, identifying several areas of planetary-system science in which Gaia can be expected to have a relevant impact, when combined with data coming from other ongoing and future planet search programs.Comment: 32 pages, 24 figures, 6 tables. Accepted for pubolication in A&

    Light-Ion-Induced Multifragmentation: The ISiS Project

    Full text link
    An extensive study of GeV light-ion-induced multifragmentation and its possible interpretation in terms of a nuclear liquid-gas phase transition has been performed with the Indiana Silicon Sphere (ISiS)4 pi detector array. Measurements were performed with 5-15 GeV/c p, pbar, and pion beams incident on 197^{197}Au and 2-5 GeV 3^3He incident on nat^{nat}Ag and 197^{197}Au targets. Both the reaction dynamics and the subsequent decay of the heavy residues have been explored. The data provide evidence for a dramatic change in the reaction observables near an excitation energy of E*/A = 4-5 MeV per residue nucleon. In this region, fragment multiplicities and energy spectra indicate emission from an expanded/dilute source on a very short time scale (20-50 fm/c). These properties, along with caloric curve and scaling-law behavior, yield a pattern that is consistent with a nuclear liquid-gas phase transition.Comment: 67 pages, 44 figures, all included in tar fil

    Detection and Characterization of Extrasolar Planets through Doppler Spectroscopy

    Full text link
    Over 300 extrasolar planets have been found since 1992, showing that planetary systems are common and exhibit an outstanding variety of characteristics. As the number of detections grows and as models of planet formation progress to account for the existence of these new worlds, statistical studies and confrontations of observation with theory allow to progressively unravel the key processes underlying planet formation. In this chapter we review the dominant contribution of Doppler spectroscopy to the present discoveries and to our general understanding of planetary systems. We also emphasize the synergy of Doppler spectroscopy and transit photometry in characterizing the physical properties of transiting extrasolar planets. As we will see, Doppler spectroscopy has not reached its limits yet and it will undoubtly play a leading role in the detection and characterization of the first Earth-mass planets.Comment: 50 pages, 16 figures, to appear in the proceedings of the Les Houches Winter School "Physics and Astrophysics of Planetary Systems" (EDP Sciences: EAS Publications Series

    MOA-2009-BLG-387Lb: A massive planet orbiting an M dwarf

    Get PDF
    We report the discovery of a planet with a high planet-to-star mass ratio in the microlensing event MOA-2009-BLG-387, which exhibited pronounced deviations over a 12-day interval, one of the longest for any planetary event. The host is an M dwarf, with a mass in the range 0.07 M_sun < M_host < 0.49M_sun at 90% confidence. The planet-star mass ratio q = 0.0132 +- 0.003 has been measured extremely well, so at the best-estimated host mass, the planet mass is m_p = 2.6 Jupiter masses for the median host mass, M = 0.19 M_sun. The host mass is determined from two "higher order" microlensing parameters. One of these, the angular Einstein radius \theta_E = 0.31 +- 0.03 mas, is very well measured, but the other (the microlens parallax \pi_E, which is due to the Earth's orbital motion) is highly degenate with the orbital motion of the planet. We statistically resolve the degeneracy between Earth and planet orbital effects by imposing priors from a Galactic model that specifies the positions and velocities of lenses and sources and a Kepler model of orbits. The 90% confidence intervals for the distance, semi-major axis, and period of the planet are 3.5 kpc < D_L < 7.9 kpc, 1.1 AU < a < 2.7AU, and 3.8 yr < P < 7.6 yr, respectively.Comment: 20 pages including 8 figures. A&A 529 102 (2011

    Coverage, Continuity and Visual Cortical Architecture

    Get PDF
    The primary visual cortex of many mammals contains a continuous representation of visual space, with a roughly repetitive aperiodic map of orientation preferences superimposed. It was recently found that orientation preference maps (OPMs) obey statistical laws which are apparently invariant among species widely separated in eutherian evolution. Here, we examine whether one of the most prominent models for the optimization of cortical maps, the elastic net (EN) model, can reproduce this common design. The EN model generates representations which optimally trade of stimulus space coverage and map continuity. While this model has been used in numerous studies, no analytical results about the precise layout of the predicted OPMs have been obtained so far. We present a mathematical approach to analytically calculate the cortical representations predicted by the EN model for the joint mapping of stimulus position and orientation. We find that in all previously studied regimes, predicted OPM layouts are perfectly periodic. An unbiased search through the EN parameter space identifies a novel regime of aperiodic OPMs with pinwheel densities lower than found in experiments. In an extreme limit, aperiodic OPMs quantitatively resembling experimental observations emerge. Stabilization of these layouts results from strong nonlocal interactions rather than from a coverage-continuity-compromise. Our results demonstrate that optimization models for stimulus representations dominated by nonlocal suppressive interactions are in principle capable of correctly predicting the common OPM design. They question that visual cortical feature representations can be explained by a coverage-continuity-compromise.Comment: 100 pages, including an Appendix, 21 + 7 figure
    • 

    corecore