91 research outputs found

    The Integrated Effect of Microbial Inoculants and Biochar Types on Soil Biological Properties, and Plant Growth of Lettuce (Lactuca sativa L.)

    Get PDF
    Numerous reports confirm the positive effect of biochar application on soil properties and plant development. However, the interaction between root-associated beneficial microbes and different types of biochar is not well understood. The objective of this study was to evaluate the plant growth of lettuce after the application of three types of biochar in loamy, sandy soil individually and in combination with plant-beneficial microbes. Furthermore, total microbial activity in rhizosphere soil of lettuce was measured by means of fluorescein diacetate (FDA) hydrolase and enzyme activities linked to carbon, nitrogen, and phosphorus cycling. We used three types of biochar: (i) pyrolysis char from cherry wood (CWBC), (ii) pyrolysis char from wood (WBC), and (iii) pyrolysis char from maize (MBC) at 2% concentration. Our results showed that pyrolysis biochars positively affected plant interaction with microbial inoculants. Plant dry biomass grown on soil amended with MBC in combination with Klebsiella sp. BS13 and Klebsiella sp. BS13 + Talaromyces purpureogenus BS16aPP inoculants was significantly increased by 5.8% and 18%, respectively, compared to the control plants. Comprehensively, interaction analysis showed that the biochar effect on soil enzyme activities involved in N and P cycling depends on the type of microbial inoculant. Microbial strains exhibited plant growth-promoting traits, including the production of indole 3-acetic-acid and hydrogen cyanide and phosphate-solubilizing ability. The effect of microbial inoculant also depends on the biochar type. In summary, these findings provide new insights into the understanding of the interactions between biochar and microbial inoculants, which may affect lettuce growth and development.Peer Reviewe

    Treatment of Community-Acquired Pneumonia in Immunocompromised Adults:A Consensus Statement Regarding Initial Strategies

    Get PDF
    Background Community-acquired pneumonia (CAP) guidelines have improved the treatment and outcomes of patients with CAP, primarily by standardization of initial empirical therapy. But current society-published guidelines exclude immunocompromised patients. Research Question There is no consensus regarding the initial treatment of immunocompromised patients with suspected CAP. Study Design and Methods This consensus document was created by a multidisciplinary panel of 45 physicians with experience in the treatment of CAP in immunocompromised patients. The Delphi survey methodology was used to reach consensus. Results The panel focused on 21 questions addressing initial management strategies. The panel achieved consensus in defining the population, site of care, likely pathogens, microbiologic workup, general principles of empirical therapy, and empirical therapy for specific pathogens. Interpretation This document offers general suggestions for the initial treatment of the immunocompromised patient who arrives at the hospital with pneumonia

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity

    Get PDF
    The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)

    Measurement of single-diffractive dijet production in proton–proton collisions at s=8TeV\sqrt{s} = 8\,\text {Te}\text {V} with the CMS and TOTEM experiments

    Get PDF
    Measurements are presented of the single-diffractive dijet cross section and the diffractive cross section as a function of the proton fractional momentum loss ξ ξ and the four-momentum transfer squared t. Both processes p p → p X p p → p X and p p → X p p p → X p , i.e. with the proton scattering to either side of the interaction point, are measured, where X X includes at least two jets; the results of the two processes are averaged. The analyses are based on data collected simultaneously with the CMS and TOTEM detectors at the LHC in proton–proton collisions at s √ =8TeV s=8TeV during a dedicated run with β ∗ =90m β∗=90m at low instantaneous luminosity and correspond to an integrated luminosity of 37.5nb −1 37.5nb−1 . The single-diffractive dijet cross section σ p X jj σjj p X , in the kinematic region ξ<0.1 ξ<0.1 , 0.03<|t|<1GeV 2 0.03<|t|<1GeV2 , with at least two jets with transverse momentum p T >40GeV pT>40GeV , and pseudorapidity |η|<4.4 |η|<4.4 , is 21.7±0.9(stat) +3.0 −3.3 (syst)±0.9(lumi)nb 21.7±0.9(stat)−3.3+3.0(syst)±0.9(lumi)nb . The ratio of the single-diffractive to inclusive dijet yields, normalised per unit of ξ ξ , is presented as a function of x, the longitudinal momentum fraction of the proton carried by the struck parton. The ratio in the kinematic region defined above, for x values in the range −2.9≤log 10 x≤−1.6 −2.9≤log10⁡x≤−1.6 , is R=(σ p X jj /Δξ)/σ jj =0.025±0.001(stat)±0.003(syst) R=(σjj p X /Δξ)/σjj=0.025±0.001(stat)±0.003(syst) , where σ p X jj σjj p X and σ jj σjj are the single-diffractive and inclusive dijet cross sections, respectively. The results are compared with predictions from models of diffractive and nondiffractive interactions. Monte Carlo predictions based on the HERA diffractive parton distribution functions agree well with the data when corrected for the effect of soft rescattering between the spectator partons

    Search for strongly interacting massive particles generating trackless jets in proton–proton collisions ats=13TeV\sqrt{s} = 13\,\text {TeV}

    Get PDF
    A search for dark matter in the form of strongly interacting massive particles (SIMPs) using the CMS detector at the LHC is presented. The SIMPs would be produced in pairs that manifest themselves as pairs of jets without tracks. The energy fraction of jets carried by charged particles is used as a key discriminator to suppress efficiently the large multijet background, and the remaining background is estimated directly from data. The search is performed using proton–proton collision data corresponding to an integrated luminosity of 16.1fb1^{-1}, collected with the CMS detector in 2016. No significant excess of events is observed above the expected background. For the simplified dark matter model under consideration, SIMPs with masses up to 100GeV are excluded and further sensitivity is explored towards higher masses

    Erratum to: Measurement of single-diffractive dijet production in proton–proton collisions at s=8TeV\sqrt{s} = 8\,\text {Te}\text {V} with the CMS and TOTEM experiments

    Get PDF

    A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution

    Get PDF
    We describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton-proton collisions at an energy of s = 13 TeV at the CERN LHC. The algorithm is trained on a large sample of simulated b jets and validated on data recorded by the CMS detector in 2017 corresponding to an integrated luminosity of 41 fb - 1 . A multivariate regression algorithm based on a deep feed-forward neural network employs jet composition and shape information, and the properties of reconstructed secondary vertices associated with the jet. The results of the algorithm are used to improve the sensitivity of analyses that make use of b jets in the final state, such as the observation of Higgs boson decay to b b ¯

    Кераміка «terra sigillata» з с. Зимне на Волині

    Get PDF
    Стаття присвячена публікації чотирьох керамічних посудин типу «terra sigillata», знайдених на дні р. Луги у с. Зимне Володимир-Волинського району Волинської області. Попередній аналіз цих знахідок дозволяє віднести їх до Понтійського центру виробництва такого посуду. Вірогідним шляхом потрапляння цієї колекції на Волинь була готська експансія у Північне Причорномор’я
    corecore