27 research outputs found

    Serum albumin and osmolality inhibit Bdellovibrio bacteriovorus predation in human serum

    Get PDF
    We evaluated the bactericidal activity of Bdellovibrio bacteriovorus, strain HD100, within blood sera against bacterial strains commonly associated with bacteremic infections, including E. coli, Klebsiella pneumoniae and Salmonella enterica. Tests show that B. bacteriovorus HD100 is not susceptible to serum complement or its bactericidal activity. After a two hour exposure to human sera, the prey populations decreased 15- to 7,300-fold due to the serum complement activity while, in contrast, the B. bacteriovorus HD100 population showed a loss of only 33%. Dot blot analyses showed that this is not due to the absence of antibodies against this predator. Predation in human serum was inhibited, though, by both the osmolality and serum albumin. The activity of B. bacteriovorus HD100 showed a sharp transition between 200 and 250 mOsm/kg, and was progressively reduced as the osmolality increased. Serum albumin also acted to inhibit predation by binding to and coating the predatory cells. This was confirmed via dot blot analyses and confocal microscopy. The results from both the osmolality and serum albumin tests were incorporated into a numerical model describing bacterial predation of pathogens. In conclusion, both of these factors inhibit predation and, as such, they limit its effectiveness against pathogenic prey located within sera

    Deep sea tests of a prototype of the KM3NeT digital optical module

    Get PDF
    The first prototype of a photo-detection unit of the future KM3NeT neutrino telescope has been deployed in the deepwaters of the Mediterranean Sea. This digital optical module has a novel design with a very large photocathode area segmented by the use of 31 three inch photomultiplier tubes. It has been integrated in the ANTARES detector for in-situ testing and validation. This paper reports on the first months of data taking and rate measurements. The analysis results highlight the capabilities of the new module design in terms of background suppression and signal recognition. The directionality of the optical module enables the recognition of multiple Cherenkov photons from the same (40)Kdecay and the localisation of bioluminescent activity in the neighbourhood. The single unit can cleanly identify atmospheric muons and provide sensitivity to the muon arrival directions

    The Large Observatory for x-ray timing

    Get PDF
    The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m2 effective area, 2-30 keV, 240 eV spectral resolution, 1° collimated field of view) and a WideField Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study

    The LOFT mission concept: a status update

    Get PDF
    The Large Observatory For x-ray Timing (LOFT) is a mission concept which was proposed to ESA as M3 and M4 candidate in the framework of the Cosmic Vision 2015-2025 program. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument and the uniquely large field of view of its wide field monitor, LOFT will be able to study the behaviour of matter in extreme conditions such as the strong gravitational field in the innermost regions close to black holes and neutron stars and the supra-nuclear densities in the interiors of neutron stars. The science payload is based on a Large Area Detector (LAD, >8m2 effective area, 2-30 keV, 240 eV spectral resolution, 1 degree collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g., GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the current technical and programmatic status of the mission

    30 Jähre Später

    No full text

    L'évaluation, la diversité culturelle et la santé mentale précoce

    No full text
    Item does not contain fulltex

    Early intervention in infant research: Evaluating outcomes

    No full text
    corecore