7 research outputs found

    Lead Sources to the Amundsen Sea, West Antarctica

    Get PDF
    This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. https://pubs.acs.org/page/policy/authorchoice_termsofuse.htmlThe global prevalence of industrial lead (Pb) contamination was exemplified decades ago by the predominance of anthropogenic Pb in samples of Antarctic surface ice and in Southern Ocean surface waters. Decreases in environmental Pb contamination corresponding with the near-global phase-out of leaded automobile gasoline beginning in the 1970s have since been observed. Measurements of Pb concentration in snow and ice core samples from Antarctica show that recent fluxes of industrial Pb to Antarctica have similarly declined. Here, we present measurements of Pb concentrations and isotopic compositions in seawater and surface sediments from the Amundsen Sea continental shelf including the Amundsen Sea Polynya. Both sets of measurements show that most (∌60–95%) of the Pb at our sites, at the time of sampling, is natural in source: that is, derived from the weathering of Antarctic continental rocks. These fluxes of natural Pb then become entrained into polynya waters either from sediment resuspension or from the transport of sediment-laden glacial melt waters to the polynya.publishedVersio

    Historic and Industrial Lead within the Northwest Pacific Ocean Evidenced by Lead Isotopes in Seawater

    No full text
    We report the continued lead (Pb) contamination of the Northwest Pacific Ocean in 2002 and present the first comprehensive Pb isotope data set for that region. In the upper ocean, a Pb concentration maxima (64–113 pmol kg<sup>–1</sup>) extended throughout the entire North Pacific Subtropical Gyre (NPSG). We determined most of the Pb in this feature was from industrial emissions by many nations in the 1980s and 1990s, with the largest contributions from leaded gasoline emissions. In contrast, the deep water (>1000 m) Pb concentrations were lower (6–37 pmol kg<sup>–1</sup>), and constituted a mix of background (natural) Pb and anthropogenic Pb inputs from preceding decades. Deep water below the Western Subarctic Gyre (WSAG) contained more industrial Pb than below the NPSG, which was attributed to a calculated 60-fold greater flux of particulate Pb to abyssal waters near the Asian continent. Assuming Pb isotope compositions in the North Pacific Ocean were homogeneous prior to large-scale 20th century anthropogenic inputs, this evidence suggests a relatively faster change in Pb isotope ratios of North Pacific deep water below the WSAG versus the NPSG

    Intercalibration of Cd and Pb Concentration Measurements In the Northwest Pacific Ocean

    No full text
    Dissolved and total Cd and Pb concentration measurements in seawater were intercalibrated using 33 samples collected on the fourth cruise of the Intergovernmental Oceanographic Commission\u27s (IOC-4) Global Investigation of Pollution in the Marine Environment (GIPME) in the northwest Pacific Ocean, as well as in three seawater reference materials (SAFe S1, SAFe D2, and NASS-5). Laboratories from Florida State University (FSU), University of California at Santa Cruz (UCSC), and University of Southern Mississippi (USM) participated in the Pb intercalibration, and two of them (FSU and UCSC) participated in the Cd intercalibration. While each of the laboratories employed different extraction techniques before analysis by inductively coupled plasma-mass spectrometry (ICP-MS), the measurements of Cd and Pb concentrations for the IOC-4 samples agreed to within 4% and 15%, respectively, and those of the reference materials agreed to within 13% and 8%, respectively. This successful intercalibration demonstrates that there now are multiple techniques available for accurately measuring Cd and Pb concentrations in seawater

    Chronology of anthropogenic impacts reconstructed from sediment records of trace metals and Pb isotopes in Todos os Santos Bay (NE Brazil)

    No full text
    The evolution of the impacts of anthropogenic activities in Todos os Santos Bay was evaluated by profiles of trace metals and Pb isotopes determined in sediment cores. Fluxes of metals increased up to 12, 4 and 2 times for Cu, Pb, and Zn, respectively, compared to those recorded in the beginning of the 20th century. Stable Pb isotopes identified a decommissioned lead smelter and burning of fossil fuels as the main sources of Pb. Most metals showed minor to moderate enrichment factors (EF \u3c 4), but Cu and Pb were highly enriched (EF = 28 and 6, respectively) at the Aratu harbor. Temporal changes in sediments were associated to different activities, namely Pb smelting, burning of fossil fuels, maritime traffic, petroleum related activities, inputs of domestic effluents, and changes in land uses. The effects of the implementation of environmental policies to improve the waters of the bay could not be identified in the evaluated cores

    Starlikeness of Libera transformation (II) (Applications of Complex Function Theory to Differential Equations)

    Get PDF
    The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 25 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017. This article is part of a special issue entitled: Conway GEOTRACES - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. GonzĂĄlez

    The GEOTRACES Intermediate Data Product 2017

    No full text
    Unidad de excelencia MarĂ­a de Maeztu MdM-2015-0552The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 25 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017. This article is part of a special issue entitled: Conway GEOTRACES - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. GonzĂĄlez
    corecore