53 research outputs found

    H2 production via ammonia decomposition in a catalytic membrane reactor

    Get PDF
    The membrane reactor is proposed in this work as a system with high potential to efficiently recover the hydrogen (H2) stored in ammonia (NH3), which has been recently proposed as an alternative for H2 storage. With this technology, NH3 decomposition and high-purity H2 separation are simultaneously performed within the same unit, and high H2 separation efficiency is achieved at lower temperature compared to conventional systems, leading to energetic and economic benefits. NH3 decomposition was experimentally performed in a Pd-based membrane reactor over a Ru-based catalyst and the performance of the conventional packed bed reactor were used as benchmark for a comparison. The results demonstrate that the introduction of a membrane in a conventional reactor enhances its performance and allows to achieve conversion higher than the thermodynamic equilibrium conversion for sufficiently high temperatures. For temperatures from and above 425 °C, full NH3 conversion was achieved and more than 86% of H2 fed to the system as ammonia was recovered with a purity of 99.998%. The application of vacuum at the membrane permeate side leads to higher H2 recovery and NH3 conversions beyond thermodynamic restrictions. On the other hand, the reactor feed flow rate and operating pressure have not shown major impacts on NH3 conversion.This project receives support from the European Union’s Horizon 2020 research and innovation under grant agreement No. 862482 (ARENHA project)

    Potent New Small-Molecule Inhibitor of Botulinum Neurotoxin Serotype A Endopeptidase Developed by Synthesis-Based Computer-Aided Molecular Design

    Get PDF
    Botulinum neurotoxin serotype A (BoNTA) causes a life-threatening neuroparalytic disease known as botulism. Current treatment for post exposure of BoNTA uses antibodies that are effective in neutralizing the extracellular toxin to prevent further intoxication but generally cannot rescue already intoxicated neurons. Effective small-molecule inhibitors of BoNTA endopeptidase (BoNTAe) are desirable because such inhibitors potentially can neutralize the intracellular BoNTA and offer complementary treatment for botulism. Previously we reported a serotype-selective, small-molecule BoNTAe inhibitor with a Kiapp value of 3.8±0.8 µM. This inhibitor was developed by lead identification using virtual screening followed by computer-aided optimization of a lead with an IC50 value of 100 µM. However, it was difficult to further improve the lead from micromolar to even high nanomolar potency due to the unusually large enzyme-substrate interface of BoNTAe. The enzyme-substrate interface area of 4,840 Å2 for BoNTAe is about four times larger than the typical protein-protein interface area of 750–1,500 Å2. Inhibitors must carry several functional groups to block the unusually large interface of BoNTAe, and syntheses of such inhibitors are therefore time-consuming and expensive. Herein we report the development of a serotype-selective, small-molecule, and competitive inhibitor of BoNTAe with a Ki value of 760±170 nM using synthesis-based computer-aided molecular design (SBCAMD). This new approach accounts the practicality and efficiency of inhibitor synthesis in addition to binding affinity and selectivity. We also report a three-dimensional model of BoNTAe in complex with the new inhibitor and the dynamics of the complex predicted by multiple molecular dynamics simulations, and discuss further structural optimization to achieve better in vivo efficacy in neutralizing BoNTA than those of our early micromolar leads. This work provides new insight into structural modification of known small-molecule BoNTAe inhibitors. It also demonstrates that SBCAMD is capable of improving potency of an inhibitor lead by nearly one order of magnitude, even for BoNTAe as one of the most challenging protein targets. The results are insightful for developing effective small-molecule inhibitors of protein targets with large active sites

    The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) began observations in July 2014. It pursues three core programs: APOGEE-2,MaNGA, and eBOSS. In addition, eBOSS contains two major subprograms: TDSS and SPIDERS. This paper describes the first data release from SDSS-IV, Data Release 13 (DR13), which contains new data, reanalysis of existing data sets and, like all SDSS data releases, is inclusive of previously released data. DR13 makes publicly available 1390 spatially resolved integral field unit observations of nearby galaxies from MaNGA,the first data released from this survey. It includes new observations from eBOSS, completing SEQUELS. In addition to targeting galaxies and quasars, SEQUELS also targeted variability-selected objects from TDSS and X-ray selected objects from SPIDERS. DR13 includes new reductions ofthe SDSS-III BOSS data, improving the spectrophotometric calibration and redshift classification. DR13 releases new reductions of the APOGEE-1data from SDSS-III, with abundances of elements not previously included and improved stellar parameters for dwarf stars and cooler stars. For the SDSS imaging data, DR13 provides new, more robust and precise photometric calibrations. Several value-added catalogs are being released in tandem with DR13, in particular target catalogs relevant for eBOSS, TDSS, and SPIDERS, and an updated red-clump catalog for APOGEE.This paper describes the location and format of the data now publicly available, as well as providing references to the important technical papers that describe the targeting, observing, and data reduction. The SDSS website, http://www.sdss.org, provides links to the data, tutorials and examples of data access, and extensive documentation of the reduction and analysis procedures. DR13 is the first of a scheduled set that will contain new data and analyses from the planned ~6-year operations of SDSS-IV.PostprintPeer reviewe

    The 16th Data Release of the Sloan Digital Sky Surveys : First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra

    Get PDF
    This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17).Peer reviewe

    Listening in on difficult conversations: an observational, multi-center investigation of real-time conversations in medical oncology

    Get PDF
    BACKGROUND: The quality of communication in medical care has been shown to influence health outcomes. Cancer patients, a highly diverse population, communicate with their clinical care team in diverse ways over the course of their care trajectory. Whether that communication happens and how effective it is may relate to a variety of factors including the type of cancer and the patient’s position on the cancer care continuum. Yet, many of the routine needs of cancer patients after initial cancer treatment are often not addressed adequately. Our goal is to identify areas of strength and areas for improvement in cancer communication by investigating real-time cancer consultations in a cross section of patient-clinician interactions at diverse study sites. METHODS/DESIGN: In this paper we describe the rationale and approach for an ongoing observational study involving three institutions that will utilize quantitative and qualitative methods and employ a short-term longitudinal, prospective follow-up component to investigate decision-making, key topics, and clinician-patient-companion communication dynamics in clinical oncology. DISCUSSION: Through a comprehensive, real-time approach, we hope to provide the fundamental groundwork from which to promote improved patient-centered communication in cancer care

    Development of a Test Protocol for Spacecraft Post-Fire Atmospheric Cleanup and Monitoring

    No full text
    Detecting and extinguishing fires, along with post-fire atmospheric cleaning and monitoring, are vital components of a spacecraft fire response system. Preliminary efforts focused on the technology evaluation of these systems under realistic conditions are described in this paper. While the primary objective of testing is to determine a smoke mitigation filter s performance, supplemental evaluations measuring the smoke-filled chamber handheld commercial off-the-shelf (COTS) atmospheric monitoring devices (combustion product monitors) are also conducted. The test chamber consists of a 1.4 cubic meter (50 cu. ft.) volume containing a smoke generator. The fuel used to generate the smoke is a mixture of polymers in quantities representative of materials involved in a circuit board fire as a typical spacecraft fire. Two fire conditions were examined: no flame and flame. No flame events are produced by pyrolyzing the fuel mixture in a quartz tube furnace with forced ventilation to produce a white, lingering-type smoke. Flame events ignite the smoke at the outlet of the tube furnace producing combustion characterized by a less opaque smoke with black soot. Electrochemical sensor measurements showed carbon monoxide is a major indicator of each fire. Acid gas measurements were recorded, but cross interferents are currently uncharacterized. Electrochemical sensor measurements and sample acquisition techniques from photoacoustic sensors are being improved. Overall, this research shows fire characterization using traditional analytical chemistry techniques is required to verify measurements recorded using COTS atmospheric monitoring devices

    Improving saliva shotgun metagenomics by chemical host DNA depletion.

    No full text
    BackgroundShotgun sequencing of microbial communities provides in-depth knowledge of the microbiome by cataloging bacterial, fungal, and viral gene content within a sample, providing an advantage over amplicon sequencing approaches that assess taxonomy but not function and are taxonomically limited. However, mammalian DNA can dominate host-derived samples, obscuring changes in microbial populations because few DNA sequence reads are from the microbial component. We developed and optimized a novel method for enriching microbial DNA from human oral samples and compared its efficiency and potential taxonomic bias with commercially available kits.ResultsThree commercially available host depletion kits were directly compared with size filtration and a novel method involving osmotic lysis and treatment with propidium monoazide (lyPMA) in human saliva samples. We evaluated the percentage of shotgun metagenomic sequencing reads aligning to the human genome, and taxonomic biases of those not aligning, compared to untreated samples. lyPMA was the most efficient method of removing host-derived sequencing reads compared to untreated sample (8.53 ± 0.10% versus 89.29 ± 0.03%). Furthermore, lyPMA-treated samples exhibit the lowest taxonomic bias compared to untreated samples.ConclusionOsmotic lysis followed by PMA treatment is a cost-effective, rapid, and robust method for enriching microbial sequence data in shotgun metagenomics from fresh and frozen saliva samples and may be extensible to other host-derived sample types

    H2 production via ammonia decomposition in a catalytic membrane reactor

    No full text
    The membrane reactor is proposed in this work as a system with high potential to efficiently recover the hydrogen (H2) stored in ammonia (NH3), which has been recently proposed as an alternative for H2 storage. With this technology, NH3 decomposition and high-purity H2 separation are simultaneously performed within the same unit, and high H2 separation efficiency is achieved at lower temperature compared to conventional systems, leading to energetic and economic benefits. NH3 decomposition was experimentally performed in a Pd based membrane reactor over a Ru-based catalyst and the performance of the conventional packed bed reactor were used as benchmark for a comparison. The results demonstrate that the introduction of a membrane in a conventional reactor enhances its performance and allows to achieve conversion higher than the thermodynamic equilibrium conversion for sufficiently high temperatures. For temperatures from and above 425 ◦C, full NH3 conversion was achieved and more than 86% of H2 fed to the system as ammonia was recovered with a purity of 99.998%. The application of vacuum at the membrane permeate side leads to higher H2 recovery and NH3 conversions beyond thermodynamic restrictions. On the other hand, the reactor feed flow rate and operating pressure have not shown major impacts on NH3 conversion

    Improving saliva shotgun metagenomics by chemical host DNA depletion

    No full text
    Abstract Background Shotgun sequencing of microbial communities provides in-depth knowledge of the microbiome by cataloging bacterial, fungal, and viral gene content within a sample, providing an advantage over amplicon sequencing approaches that assess taxonomy but not function and are taxonomically limited. However, mammalian DNA can dominate host-derived samples, obscuring changes in microbial populations because few DNA sequence reads are from the microbial component. We developed and optimized a novel method for enriching microbial DNA from human oral samples and compared its efficiency and potential taxonomic bias with commercially available kits. Results Three commercially available host depletion kits were directly compared with size filtration and a novel method involving osmotic lysis and treatment with propidium monoazide (lyPMA) in human saliva samples. We evaluated the percentage of shotgun metagenomic sequencing reads aligning to the human genome, and taxonomic biases of those not aligning, compared to untreated samples. lyPMA was the most efficient method of removing host-derived sequencing reads compared to untreated sample (8.53 ± 0.10% versus 89.29 ± 0.03%). Furthermore, lyPMA-treated samples exhibit the lowest taxonomic bias compared to untreated samples. Conclusion Osmotic lysis followed by PMA treatment is a cost-effective, rapid, and robust method for enriching microbial sequence data in shotgun metagenomics from fresh and frozen saliva samples and may be extensible to other host-derived sample types
    corecore