1,158 research outputs found

    Effect of concurrent vitamin A and iodine deficiencies on the thyroid-pituitary axis in rats

    Full text link
    OBJECTIVE: Deficiencies of vitamin A and iodine are common in many developing countries. Vitamin A deficiency (VAD) may adversely affect thyroid metabolism. The study aim was to investigate the effects of concurrent vitamin A and iodine deficiencies on the thyroid-pituitary axis in rats. DESIGN: Weanling rats (n = 56) were fed diets deficient in vitamin A (VAD group), iodine (ID group), vitamin A and iodine (VAD + ID group), or sufficient in both vitamin A and iodine (control) for 30 days in a pair-fed design. Serum retinol (SR), thyroid hormones (FT(4), TT(4), FT(3), and TT(3)), serum thyrotropin (TSH), pituitary TSHbeta mRNA expression levels, and thyroid weights were determined at the end of the depletion period. MAIN OUTCOME: Compared to the control and ID groups, SR concentrations were about 35% lower in the VAD and VAD + ID groups (p < 0.001), indicating moderate VA deficiency. Comparing the VAD and control groups, there were no significant differences in TSH, TSHbeta mRNA, thyroid weight, or thyroid hormone levels. Compared to the control group, serum TSH, TSHbeta mRNA, and thyroid weight were higher (p < 0.05), and FT4 and TT4 were lower (p < 0.001), in the VAD + ID and ID groups. Compared to the ID group, TSH, TSHbeta mRNA, and thyroid weight were higher (p < 0.01) and FT(4) and TT(4) were lower (p < 0.001) in the VAD + ID group. There were no significant differences in TT3 or FT3 concentrations among groups. CONCLUSION: Moderate VAD alone has no measurable effect on the pituitary-thyroid axis. Concurrent ID and VAD produce more severe primary hypothyroidism than ID alone

    A genetic programming based fuzzy regression approach to modelling manufacturing processes

    Get PDF
    Fuzzy regression has demonstrated its ability to model manufacturing processes in which the processes have fuzziness and the number of experimental data sets for modelling them is limited. However, previous studies only yield fuzzy linear regression based process models in which variables or higher order terms are not addressed. In fact, it is widely recognised that behaviours of manufacturing processes do often carry interactions among variables or higher order terms. In this paper, a genetic programming based fuzzy regression GP-FR, is proposed for modelling manufacturing processes. The proposed method uses the general outcome of GP to construct models the structure of which is based on a tree representation, which could carry interaction and higher order terms. Then, a fuzzy linear regression algorithm is used to estimate the contributions and the fuzziness of each branch of the tree, so as to determine the fuzzy parameters of the genetic programming based fuzzy regression model.To evaluate the effectiveness of the proposed method for process modelling, it was applied to the modelling of a solder paste dispensing process. Results were compared with those based on statistical regression and fuzzy linear regression. It was found that the proposed method can achieve better goodness-of-fitness than the other two methods. Also the prediction accuracy of the model developed based on GP-FR is better than those based on the other two methods

    Hormone-Sensitive Lipase Knockouts

    Get PDF
    All treatments for obesity, including dietary restriction of carbohydrates, have a goal of reducing the storage of fat in adipocytes. The chief enzyme responsible for the mobilization of FFA from adipose tissue, i.e., lipolysis, is thought to be hormone-sensitive lipase (HSL). Studies of HSL knockouts have provided important insights into the functional significance of HSL and into adipose metabolism in general. Studies have provided evidence that HSL, though possessing triacylglycerol lipase activity, appears to be the rate-limiting enzyme for cholesteryl ester and diacylglycerol hydrolysis in adipose tissue and is essential for complete hormone stimulated lipolysis, but other triacylglycerol lipases are important in mediating triacylglycerol hydrolysis in lipolysis. HSL knockouts are resistant to both high fat diet-induced and genetic obesity, displaying reduced quantities of white with increased amounts of brown adipose tissue, increased numbers of adipose macrophages, and have multiple alterations in the expression of genes involved in adipose differentiation, including transcription factors, markers of adipocyte differentiation, and enzymes of fatty acid and triglyceride synthesis. With disruption of lipolysis by removal of HSL, there is a drastic reduction in lipogenesis and alteration in adipose metabolism

    Data quality and practical challenges of thyroid volume assessment by ultrasound under field conditions - observer errors may affect prevalence estimates of goitre

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ultrasonographic estimation of thyroid size has been advocated as being more precise than palpation to diagnose goitre. However, ultrasound also requires technical proficiency. This study was conducted among Saharawi refugees, where goitre is highly prevalent. The objectives were to assess the overall data quality of ultrasound measurements of thyroid volume (Tvol), including the intra- and inter-observer agreement, under field conditions, and to describe some of the practical challenges encountered.</p> <p>Methods</p> <p>In 2007 a cross-sectional study of 419 children (6-14 years old) and 405 women (15-45 years old) was performed on a population of Saharawi refugees with prevalent goitre, who reside in the Algerian desert. Tvol was measured by two trained fieldworkers using portable ultrasound equipment (examiner 1 measured 406 individuals, and examiner 2, 418 individuals). Intra- and inter-observer agreement was estimated in 12 children selected from the study population but not part of the main study. In the main study, an observer error was found in one examiner whose ultrasound images were corrected by linear regression after printing and remeasuring a sample of 272 images.</p> <p>Results</p> <p>The intra-observer agreement in Tvol was higher in examiner 1, with an intraclass correlation coefficient (ICC) of 0.97 (95% CI: 0.91, 0.99) compared to 0.86 (95% CI: 0.60, 0.96) in examiner 2. The ICC for inter-observer agreement in Tvol was 0.38 (95% CI: -0.20, 0.77). Linear regression coefficients indicated a significant scaling bias in the original measurements of the AP and ML diameter and a systematic underestimation of Tvol (a product of AP, ML, CC and a constant). The agreement between re-measured and original Tvol measured by ICC (95% CI) was 0.76 (0.71, 0.81). The agreement between re-measured and corrected Tvol measured by ICC (95% CI) was 0.97 (0.96, 0.97).</p> <p>Conclusions</p> <p>An important challenge when using ultrasound to assess thyroid volume under field conditions is to recruit and train qualified personnel to perform the measurements. Methodological studies are important to assess data quality and can facilitate statistical corrections and improved estimates.</p

    Association of a marker of N-acetylglucosamine with progressive multiple sclerosis and neurodegeneration

    Get PDF
    IMPORTANCE: N-glycan branching modulates cell surface receptor availability, and its deficiency in mice promotes inflammatory demyelination, reduced myelination, and neurodegeneration. N-acetylglucosamine (GlcNAc) is a rate-limiting substrate for N-glycan branching, but, to our knowledge, endogenous serum levels in patients with multiple sclerosis (MS) are unknown. OBJECTIVE: To investigate a marker of endogenous serum GlcNAc levels in patients with MS. DESIGN, SETTING, AND PARTICIPANTS: A cross-sectional discovery study and cross-sectional confirmatory study were conducted at 2 academic MS centers in the US and Germany. The discovery study recruited 54 patients with MS from an outpatient clinic as well as 66 healthy controls between April 20, 2010, and June 21, 2013. The confirmatory study recruited 180 patients with MS from screening visits at an academic MS study center between April 9, 2007, and February 29, 2016. Serum samples were analyzed from December 2, 2013, to March 2, 2015. Statistical analysis was performed from February 23, 2020, to March 18, 2021. MAIN OUTCOMES AND MEASURES: Serum levels of GlcNAc plus its stereoisomers, termed N-acetylhexosamine (HexNAc), were assessed using targeted tandem mass spectroscopy. Secondary outcomes (confirmatory study) comprised imaging and clinical disease markers. RESULTS: The discovery cohort included 66 healthy controls (38 women; mean [SD] age, 42 [20] years), 33 patients with relapsing-remitting MS (RRMS; 25 women; mean [SD] age, 50 [11] years), and 21 patients with progressive MS (PMS; 14 women; mean [SD] age, 55 [7] years). The confirmatory cohort included 125 patients with RRMS (83 women; mean [SD] age, 40 [9] years) and 55 patients with PMS (22 women; mean [SD] age, 49 [80] years). In the discovery cohort, the mean (SD) serum level of GlcNAc plus its stereoisomers (HexNAc) was 710 (174) nM in healthy controls and marginally reduced in patients with RRMS (mean [SD] level, 682 [173] nM; P = .04), whereas patients with PMS displayed markedly reduced levels compared with healthy controls (mean [SD] level, 548 [101] nM; P = 9.55 × 10(-9)) and patients with RRMS (P = 1.83 × 10(-4)). The difference between patients with RRMS (mean [SD] level, 709 [193] nM) and those with PMS (mean [SD] level, 405 [161] nM; P = 7.6 × 10(-18)) was confirmed in the independent confirmatory cohort. Lower HexNAc serum levels correlated with worse expanded disability status scale scores (ρ = -0.485; P = 4.73 × 10(-12)), lower thalamic volume (t = 1.7; P = .04), and thinner retinal nerve fiber layer (B = 0.012 [SE = 7.5 × 10(-11)]; P = .008). Low baseline serum HexNAc levels correlated with a greater percentage of brain volume loss at 18 months (t = 1.8; P = .04). CONCLUSIONS AND RELEVANCE: This study suggests that deficiency of GlcNAc plus its stereoisomers (HexNAc) may be a biomarker for PMS. Previous preclinical, human genetic, and ex vivo human mechanistic studies revealed that N-glycan branching and/or GlcNAc may reduce proinflammatory responses, promote myelin repair, and decrease neurodegeneration. Combined, the data suggest that GlcNAc deficiency may be associated with progressive disease and neurodegeneration in patients with MS

    Hepatotoxicity induced by horse ATG and reversed by rabbit ATG: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of antilymphocyte agents has improved patient and graft survival in hematopoietic stem cell and solid organ transplantation but has been associated with the development of short-term toxicities as well as long-term complications.</p> <p>Case presentation</p> <p>We report a young female with Fanconi anemia who received antithymocyte globulin as part of the conditioning regimen prior to her planned allogeneic hematopoietic stem cell transplant at King Faisal Specialist Hospital and Research Centre in Riyadh. She developed sudden and severe hepatotoxicity after receiving the first dose of horse antithymocyte globulin, manifested by marked elevation of serum transaminases and mild elevation of serum bilirubin level. Immediately after withdrawal of the offending agent and shifting to the rabbit form of antithymocyte globulin, the gross liver dysfunction started to subside and the hepatic profile results returned to the pre-transplant levels few weeks later. The patient had her allogeneic hematopoietic stem cell transplant as planned without any further hepatic complications. After having a successful allograft, she was discharged from the stem cell transplant unit. During her follow up at the outpatient clinic, the patient remained very well and no major complication was encountered.</p> <p>Conclusion</p> <p>Hepatotoxicity related to the utilization of antithymocyte globulin varies considerably in severity and may be transient or long standing. There may be individual or population based susceptibilities to the development of side effects and these adverse reactions may also vary with the choice of the agent used. Encountering adverse effects with one type of antithymocyte agents should not discourage clinicians from shifting to another type in situations where continuation of the drug is vital.</p

    Studying the Underlying Event in Drell-Yan and High Transverse Momentum Jet Production at the Tevatron

    Get PDF
    We study the underlying event in proton-antiproton collisions by examining the behavior of charged particles (transverse momentum pT > 0.5 GeV/c, pseudorapidity |\eta| < 1) produced in association with large transverse momentum jets (~2.2 fb-1) or with Drell-Yan lepton-pairs (~2.7 fb-1) in the Z-boson mass region (70 < M(pair) < 110 GeV/c2) as measured by CDF at 1.96 TeV center-of-mass energy. We use the direction of the lepton-pair (in Drell-Yan production) or the leading jet (in high-pT jet production) in each event to define three regions of \eta-\phi space; toward, away, and transverse, where \phi is the azimuthal scattering angle. For Drell-Yan production (excluding the leptons) both the toward and transverse regions are very sensitive to the underlying event. In high-pT jet production the transverse region is very sensitive to the underlying event and is separated into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The data are corrected to the particle level to remove detector effects and are then compared with several QCD Monte-Carlo models. The goal of this analysis is to provide data that can be used to test and improve the QCD Monte-Carlo models of the underlying event that are used to simulate hadron-hadron collisions.Comment: Submitted to Phys.Rev.

    Measurement of the W+WW^+W^- Production Cross Section and Search for Anomalous WWγWW\gamma and WWZWWZ Couplings in ppˉp \bar p Collisions at s=1.96\sqrt{s} = 1.96 TeV

    Get PDF
    This Letter describes the current most precise measurement of the WW boson pair production cross section and most sensitive test of anomalous WWγWW\gamma and WWZWWZ couplings in ppˉp \bar p collisions at a center-of-mass energy of 1.96 TeV. The WWWW candidates are reconstructed from decays containing two charged leptons and two neutrinos, where the charged leptons are either electrons or muons. Using data collected by the CDF II detector from 3.6 fb1^{-1} of integrated luminosity, a total of 654 candidate events are observed with an expected background contribution of 320±47320 \pm 47 events. The measured total cross section is σ(ppˉW+W+X)=12.1±0.9(stat)1.4+1.6(syst)\sigma (p \bar p \to W^+ W^- + X) = 12.1 \pm 0.9 \textrm{(stat)} ^{+1.6}_{-1.4} \textrm{(syst)} pb, which is in good agreement with the standard model prediction. The same data sample is used to place constraints on anomalous WWγWW\gamma and WWZWWZ couplings.Comment: submitted to Phys. Rev. Let

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death
    corecore