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Abstract 

Fuzzy regression has demonstrated its ability to model manufacturing processes in 

which the processes have fuzziness and the number of experimental data sets for 

modeling them is limited. However, previous studies only yield fuzzy linear 

regression based process models in which variables or higher order terms are not 

addressed. In fact, it is widely recognized that behaviors of manufacturing processes 

do often carry interactions among variables or higher order terms. In this paper, a 

genetic programming based fuzzy regression GP-FR, is proposed for modeling 

manufacturing processes. The proposed method uses the general outcome of GP to 

construct models the structure of which is based on a tree representation, which could 

carry interaction and higher order terms. Then, a fuzzy linear regression algorithm is 

used to estimate the contributions and the fuzziness of each branch of the tree, so as 

to determine the fuzzy parameters of the genetic programming based fuzzy regression 

model. To evaluate the effectiveness of the proposed method for process modeling, it 

was applied to the modeling of solder paste dispensing process. Results were 

compared with those based on statistical regression and fuzzy linear regression. It was 

found that the proposed method can achieve better goodness-of-fitness than the other 

two methods. Also the prediction accuracy of the model developed based on GP-FR 

is better than those based on the other two methods. 

Keywords: Fuzzy regression, genetic programming, process modeling, solder paste 

dispensing 
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1 Introduction 

In today’s competitive market, manufacturers need to control variability at each of the 

many processing steps in a manufacturing line, and all of the variables that control the 

desired output in a process need to be understood and optimized to maintain tight control. 

This can be achieved by developing appropriate physical models, or empirical models, to 

represent the manufacturing process. Analytical models are based on a physical 

understanding of the process, and rely on physical laws, typically a set of governing 

partial differential equations. They are attractive because they provide a fundamental 

understanding of the relationships between the input and output parameters. Various 

analytical models have been developed for manufacturing processes, such as fluid 

dispensing (Chen 2002, Li et al. 2001), injection molding (Chiang et al. 1991), and 

transfer molding (Han et al. 2000), but many manufacturing processes are too complex to 

model accurately and analytically. 

 Empirical modeling is a popular approach to the development of process models, 

based on using experimental data. The classical statistical regression method is a 

common empirical approach to the development of such process models (Seber 2003). It 

is well known that the statistical regression models are accurate only in the range in 

which they are developed. In conventional regression analysis, deviations between the 

observed values and the estimates are assumed to be due to random errors. Thus, 

statistical techniques are applied in order to make estimates and inferences in regression 

analysis. Statistical regression models can be applied only if the given data is distributed 

according to a statistical model, and the relationship between dependent and independent 

variables is crisp. However, in some manufacturing processes, it is difficult to find 
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probability distributions for dependent variables. The deviations in such cases are due to 

the indefinite structure of the system or to imprecise observations. The uncertainty in this 

type of process modeling becomes fuzzy. 

 Artificial neural networks (Simpson 1989) have been used to develop process 

models for various manufacturing processes, such as resistance spot welding (Li et al., 

2007) and transfer molding (Tong et al., 2004). These networks have the capability to 

transform a non-linear mathematical model into a simplified black-box structure, and 

have the advantage of learning and generalization abilities, as well as nonlinearity. 

Previous research has already confirmed that neural networks are powerful tools for 

modeling nonlinear, complex, and noisy processes. A fuzzy logic modeling technique has 

been successfully applied to develop models for various manufacturing processes, such as 

the Flip-Chip bonding process (Kang et al., 1993), vapor phase soldering (Xie et al. 

1994), and the waterjet depainting process (Babets and Geskin, 2000). The basic 

elements of a fuzzy logic model are internal functions, membership functions, and 

outputs. The use of several internal functions accounts for the fuzziness of the model. 

However, the existing neural networks, and fuzzy logic modeling approaches normally 

require a large number of experimental data sets to develop models, which are usually not 

available in process designs. Also due to their lack of transparency, sensitivity studies of 

process parameters cannot be done easily. 

 In contrast, fuzzy linear regression has the distinct advantage that a manufacturing 

process, which has a high degree of fuzziness, can be modeled by using only a few or 

even incomplete experimental data sets (Tanaka et al. 1982, Takagi and Sugeno 1985, 

Tanaka and Watada 1988). An attempt was made by Schaiable and Lee (1997) to model 
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the vertical CVD process using the fuzzy linear regression method. Lai and Chang (1994) 

applied fuzzy linear regression to model the die casting process. Ip et al. (2003a) 

introduced the fuzzy linear regression to develop a process model for epoxy dispensing. 

Modeling of transfer molding using fuzzy linear regression was reported by Ip et al. 

(2003b). Kwong and Bai (2005) have performed process modeling and optimization 

using both fuzzy linear regression and fuzzy linear programming approaches. Three 

different approaches of fuzzy linear regression were summarized in Chang and Ayyub 

(2001). However, the existing fuzzy regression approaches cannot be used to develop 

models which contain interaction terms or even higher order terms. In fact, interaction 

among process parameters and nonlinear behavior of manufacturing process commonly 

exist. If interaction terms or higher order terms are integrated into the approach of fuzzy 

regression, more accurate models can be developed. 

 Genetic programming (GP) is an evolutionary method which can be used to 

generate models with interaction terms or higher order terms (Koza 1992, Koza 1994). 

Lakshminarayanan et al. (2000), Madar et al. (2005), Gray et al. (1996), McKay et al. 

(1997) and Willis et al. (1997) have demonstrated how GP can be used to generate 

models with interaction terms or higher order terms, and the least square algorithm is 

then used to perform the associated parameter estimation of the models. However, quite a 

number of manufacturing processes involve uncertainty, due to fuzziness. Therefore the 

above GP methods together with the least square algorithm may not yield the best 

modeling results, since the methods do not consider the fuzzy type of uncertainty. 

 To overcome the above deficiencies, in this paper, a new approach of fuzzy 

regression namely genetic programming based fuzzy regression GP-FR is proposed. 



 6 

Fuzzy regression based process models are developed which can take into account 

interaction terms and higher order terms. The method uses the general outcomes of GP to 

construct the structures of models based on a tree representation where both the 

interaction and higher order terms can be considered. Then fuzzy regression is used to 

estimate the contributions of each branch of the tree, so as to determine the fuzzy 

parameters of each term of the model. Since interaction and higher order terms can be 

generated and represented in branches of the tree based on the GP-FR approach, fuzzy 

regression models with interaction and higher order terms can be produced. To evaluate 

the effectiveness of the proposed GP-FR approach to modeling manufacturing processes, 

it was applied to modeling the solder paste dispensing process. Results of the modeling 

were compared with those based on fuzzy linear regression and statistical regression. 

 

2 Genetic Programming Based Fuzzy Regression 

Fuzzy linear regression analysis, was first introduced by Tanaka and Watada (1988), in 

which two factors, namely the degree of fitness and the fuzziness of data sets, are 

considered. A fuzzy linear regression model is commonly presented as follows: 

 ( ) xAxAxAxAxAAxfy NNjjLR
~~...~...~~~~~

22110 =++++++==    (1) 

where [ ]TNxxxx ,...,,,1 21=  is a crisp vector of independent variables, and y~  is the 

estimated fuzzy output. [ ]NAAAAA ~,...~,~,~~
210=  is a vector of fuzzy parameters of the fuzzy 

linear regression model. jA~  is presented in the form of symmetric triangular fuzzy 

numbers denoted by ( )jjj cA ,~ α= , j = 0,1,2,…,N, where its membership function is 

shown as below: 
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where jα  is the central value of the fuzzy number and jc  is the spread. Therefore the 

fuzzy linear regression model can be rewritten as shown below: 

 ( ) ( ) ( ) ( ) NNN xcxcxccy ,...,,,~
22211100 αααα ++++=     (3) 

 However, interactions between variables and higher order terms are not included 

in the fuzzy linear regression defined in (1). In fact, interactions between variables and 

higher order terms often exist in physical systems. 

 The general form of the fuzzy regression models, which involves interactions 

between variables and higher order terms, can be represented as: 

 ( ) ( ) ( )NN

N
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j
jiij
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ii xxxfxxfxffy ,...,~...,~~~~

21,...2,1
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= ==
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in which 0
~f  is a fuzzy bias term and ( )ii xf~ , ( )jiij xxf ,~ , …represent a univariate fuzzy 

component, and a bivariate fuzzy component, … respectively (Friedman 1991). A higher 

order high-dimensional Kolmogorov-Gabor polynomial (Gabor et al 1961) is one of the 

forms of (4), which can be written as: 

 ( ) ∑ ∑ ∏∑∑∑
= = == ==

+++==
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where ( )000 ,~ cA α= , ( )111 ,~ cA α= , ( )222 ,~ cA α= , … 

( )NNN cA ,~ α= , ( )111111 ,~ cA α= , ( )121212 ,~ cA α= ,… ( )NNNNNN cA ,~ α= ,…

( )NNNNNN cA ......... ,~ α= . 
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 The fuzzy regression model (5) can be rewritten as: 

 
NRNR NN xAxAxAxAy ''~...''~''~''~~

221100 ++=      (6) 

or ( ) ( ) ( ) ( )
NRNRNR NNN xcxcxcxcy '','...'',''',''','~

222111000 αααα +++=    (7) 

where 1+NNR is the number of terms of (5), (6) and (7); 00
~'~ AA = , 11

~'~ AA = , 22
~'~ AA = ,… 

NNN AA
NR ...

~'~
= ; 1'0 =x , 11' xx = , 22' xx = , … dN xxxx

NR
...' 21 ⋅⋅= ; and  ( )000 ,'~ αcA = , 

( )111 ',''~ αcA = , … ( )
NRNRNR NNN cA ',''~ α= . iA'~  and ix'  are called the fuzzy parameters and 

the transformed variables respectively, where i=0,1,2,…NNR. 

 The vectors of the fuzzy parameters are defined as: 

 ( ) ( ) ( ) ( )( )
NRNRNR NNN cccAAAA ',',...',',',''~,...'~,'~'~

110010 ααα== ,   (8) 

 ( )
NRNcccc ',...','' 10= ,        (9) 

and ( )
NRN',...','' 10 αααα = .        (10) 

 The vector of the transformed variables is defined as: 

 ( )
NRNxxxxx ',...',','' 210= .       (11) 

 Using the vectors of the fuzzy parameter and the vector of transformed variables, 

(6) can be rewritten as: 

 TxAy ''~~ ⋅=          (12) 

 Figure 1 shows a fuzzy regression model which contains all samples within the 

nonlinear polynomial intervals. 

 Since some terms in (6) may be redundant, prudent selection of significant terms 

or orders is advisable if a more parsimonious and adequate model is desired. In this paper, 
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the genetic programming based fuzzy regression (GP-FR), is proposed and descriptions 

of it are given. 

The pseudocode of the genetic programming based fuzzy regression (GP-FR) is 

shown below. 

t=0 

Initialize Ω(t)=[θ1(t), θ2(t),… θPOP(t)] 

Assign fuzzy parameters to all θi(t) 

// Ω(t) is the population of the t-th generation. 

// θi(t) is the i-th individual of Ω(t). 

Evaluate all θi(t) according to a fitness function 

while (Terminational condition not fulfilled) do { 

             Parent Selection Ω(t+1) 

             Crossover Ω(t+1) 

             Mutation Ω(t+1) 

             Determine fuzzy parameters in all θi(t+1) by using 

                              Tanaka’s fuzzy regression 

             Evaluate all θi(t+1) 

             Ω(t)= Ω(t+1) 

             t=t+1 

} 

The GP-FR first starts with creating a random initial population Ω(t) with POP 

individuals θi(t), while t=0. Each individual θi(t) is in a form of tree structure, that can be 

used to represented the structure of the fuzzy regression model as defined in (5). Then the 
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fuzzy parameters are assigned to each individual θi(t) by applying  Tanaka and Watada’s 

(1988) fuzzy regression. All individuals are evaluated according to a defined fitness 

function which is aimed at evaluating the goodness-of-fitness of the fuzzy regression 

model. The parent selection process uses the goodness-of-fitness of each individual to 

determine the selection of potential individuals for performing crossover or mutation. 

Finally, the new individuals with the determined fuzzy parameters are evaluated using the 

fitness function in order to create a new population Ω(t+1). The process continues until 

the pre-defined termination condition is fulfilled. Major aspects of applying the GP-FR 

on modeling the functional relationships are described below: 

 

2.1 Model Representation 

In the GP-FR, one of the most popular methods to represent structures is by using 

hierarchical trees which are composed of functions F and terminals T (Koza 1992). The 

fuzzy regression model (5) contains only the three arithmetic operations, +, - and *, thus 

F is represented as F = {+, -, *}. The set of terminals T = {x, p~ } contains the variable set 

x={ x1, x2, … xN} of the fuzzy regression model and the fuzzy parameter set p~  = 

{ }
NSNpppp ~,...,~,~,~

210  of the fuzzy regression model, where n is the number of variables and 

NNS is the number of terms of the fuzzy regression model. A potential solution is depicted 

as a labeled tree with ordered branches. In the tree, operations from the function set F are 

used as internal nodes, and arguments from the terminal set T are used as terminal nodes. 

For example, Figure 2 shows an example of a hierarchical tree that expresses the 

following formulation: 

(x1*x1) - (x2*x2) + (x1*x2*x4) 
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which is equivalent to: 

 x1
2 – x2

2 + x1 x2 x4 

 The fuzzy parameters set p~  = { }
NSNpppp ~,...,~,~,~

210  can be obtained after 

determining the structure of the function from the tree. In Figure 2, the number of fuzzy 

parameters of the fuzzy regression model is 4. Therefore, the completed fuzzy regression 

model can be represented as follows: 

 0
~p  + 1

~p  ·x1
2 – 2

~p ·x2
2 + 3

~p ·x1 x2 x4, 

 It can also be represented by: 

 0
~p  + 1

~p  ·x’1
 – 2

~p ·x’2 + 3
~p ·x’3, 

where x’1= x1
2, x’2= x2

2 and x’3= x1·x2·x4.  

 In this research, the fuzzy parameters, 0
~p , 1

~p , …
NSNp~ , are determined according 

to Tanaka and Watada’s (1988) fuzzy regression. The following linear programming 

problem is formulated for the fuzzy regression problem with reference to Tanaka et al. 

(1982). By solving the linear programming problem, the fuzzy parameters, 0
~p , 

1
~p , …

NSNp~ , can be determined. 

 ( )∑ ∑
= =









=

NRN

j

M

i
jj ixcJMinimize

0 1
''       (13) 

where M is the number of data sets, and ( )ix j'  is the j-th transformed variable of the 

fuzzy polynomial model of the i-th data set, subject to: 

 ( ) ( ) ( )iyixchix
NRNR N

j
jj

N

j
jj ≥−+ ∑∑

== 00
'')1(''α      (14) 
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 ( ) ( ) ( )iyixchix
NRNR N

j
jj

N

j
jj ≤−+ ∑∑

== 00
'')1(''α      (15) 

 ( ) , allfor  1',',0' 0 iixRc jj =∈≥ α       (16) 

 .,2,1,0,,2,1,10 NRNjMih  ==≤≤      (17) 

 J in (13) is the total fuzziness of the regression model. The value of h in (14) and 

(15) is between 0 and 1. h refers to the degree to which the fuzzy linear model fits the 

given data sets, and is subjectively chosen by decision makers. Constraints (14) and (15) 

impose the restriction that the observation of the i-th data set ( )iy  has at least h degree of 

belonging to ( )iy~  as ( ) ( )( ) ),,2,1(~ Mihiyiy =≥µ . Therefore, the objective of solving 

the linear programming problem (13-17) is to determine the fuzzy nonlinear parameters 

( )jjj cA ',''~ α=  such that the total vagueness J is minimized subject to 

( ) ( )( ) ),,2,1(~ Mihiyiy =≥µ . 

 

2.2 Fitness function 

GP-FR evaluates the goodness-of-fitness of each individual by using a fitness function, 

which is based on the mean absolute error (MAE), and can reflect the differences 

between the predicted values of the model and the actual values of the data sets. The 

MAE of the j-th individual can be calculated based on (18). 

 
( ) ( )( )

( )∑
=

−
×=

M

k

j
j ky

kxFky
M

MAE
1

1%100 ,     (18) 

where Fj is the fuzzy regression model represented by the j-th individual, 

( ) ( )( )kxky , = ( ) ( ) ( ) ( )( )( )kxkxkxky N,...,, 21  is the k-th training data set, N is the number of 
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variables of the training data set, and M is the number of training data sets used for 

developing the fuzzy regression model. 

(18) is commonly known as an indicator of training errors in a model. It reflects 

how well the model can fit the training data sets. However, a model may contain a lot of 

unnecessary and complex terms. A complex over-parameterized model with a large 

number of parametrical terms reduces the transparency and ease of interpretation of the 

model. To avoid the GP-FR from generating models which are too complex, a fitness 

function is designed to balance the tradeoff between the reduction of complexity and 

model accuracy. In this research, penalty terms are introduced into the fitness function of 

the GP-FR (McKay et al. 1997), and the fitness of the j-th individual is denoted as: 

 ( )( )( )21exp1
1

cLc
MAE

fitness
j

j
j −+

−
=       (19) 

where fitnessj is the fitness value, Lj is the number of nodes of the j-th individual, and c1 

and c2 are both penalty terms. 

 

2.3 Crossover and mutation 

Like other evolutionary algorithms, the two main evolutionary operators are crossover 

and mutation. The crossover operation produces a pair of offspring that inherit 

characteristics from both parents by selecting a random node in each of the hierarchical 

tree structures of the parents (as shown in Figure 3a) and exchanging the associated sub-

expressions of the hierarchical tree structures (as shown in Figure 3b). Because of the 

dynamic representation used in GP-FR, typically the parents are different in size, shape 

and content. The process of mapping the genotype onto the phenotype does not 

correspond to a one-to-one relationship. Therefore the resulting offspring can be 
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expressed by more than one different tree structure and some diversification of the 

population is allowed. 

 Mutation is performed by randomly selecting a node that is an internal or terminal 

node, and by replacing the associated sub-expression with a randomly generated sub-

expression. For example, Figure 4 shows that the node of a minus is selected and is 

mutated to a sum. 

 

2.4 Selection and convergence 

After the operations of crossover and mutation, individuals from the current population 

with relatively better fitness are selected to serve as parents for the next generation. The 

approach of a roulette-wheel, which is one of the most common selection methods used 

for selecting individuals to perform reproduction operations in evolutionary algorithms 

(Goldberg 1989), is used for the selection of individuals. Regarding the thj  individual, its 

fitness is assigned a value, fitness j , and the selection probability value, jprob , is defined 

as: 

    
∑
=

= POP

j
j

j
j

1

fitness

fitness
prob      (20) 

where POP is the population size of the GP-FR. Equation (20) shows that the individual 

with a larger fitness value has a higher probability of being selected. 

 After the selection, the population evolves and improves iteratively until a 

stopping condition is met. In genetic programming, there are several stopping conditions. 

In this research, the stopping criterion is met when the number of generations is equal to 
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a pre-defined number of generations. Otherwise, the GP-FR goes on to the next 

evolutionary iteration. 

 

3 Validation of genetic programming based fuzzy regression approach to modeling 

manufacturing processes 

To validate the effectiveness of the GP-FR approach to modeling manufacturing 

processes, it is employed to model a solder paste dispensing process used in electronic 

manufacturing. The modeling results are compared with those based on the fuzzy linear 

regression and statistical regression. 

 

3.1 Solder Paste Dispensing Process 

In electronic manufacturing, solder dispensing machines are so controlled that they 

automatically place a certain amount of solder paste on a printed circuit board. The solder 

paste spots must be positioned correctly and must contain the specified amount of solder 

paste such that when a surface mounted IC component is placed onto the solder paste, all 

of the IC’s leads are aligned correctly with each solder spot. 

 The motion of the dispensing machine has three axes. The x-axis and y-axis are 

used to place the solder paste dispenser over the desired location, and the z-axis is used to 

position the tip of the solder paste disperser at the desired height above the board. The 

dispensing machine works as follows: 

 A series of x, y and z coordinates describing the locations of where the solder 

paste is to be deposited is entered into the system’s computer program. For each of these 

locations two programmable process parameters are specified: 1) the amount of solder 
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paste, which is governed by the amount of time that the pump is engaged, and 2) the 

dwell time, which is the length of time the dispensing system remains over the location 

after the pump has been disengaged. A schematic diagram of a solder paste dispensing 

system is shown in Figure 5. The continuously running motor is connected to a clutch. 

The output of the clutch drives a screw pump. The amount of time, that the clutch is 

engaged, determines the amount of solder paste deposited, and is called the shot size. The 

solder paste exits through the interchangeable needle. The different solder pastes come 

prepackaged in tubular containers, which are inserted in the receptacle adjacent to the 

motor and clutch structure. 

 In the process of solder paste dispensing, the key quality characteristic is the 

diameter of the circular solder pads. The four significant operating parameters (factors) 

for the solder paste dispensing process to be studied are pressure, needle inner diameter, 

shot size and dwell time which are represented by x1, x2, x3 and x4 respectively. In the 

experimental plan, each factor has two levels. Table 1 shows the setting of each level of 

the factors. Table 2 shows the experimental results. 

 

4.2 Model Development 

For model development whether using GP-FR, statistic regression or fuzzy linear 

regression, the four operating parameters x1, x2, x3 and x4 need to be normalized to [0,1], 

and their resulting values are shown in Table 2. Evaluation of the effectiveness of the 

models can be carried out by investigating the mean of training errors and the variance of 

training errors, which are defined as Re and Rv respectively as follows: 

 
( ) ( ) ( ) ( ) ( )( )

( ) %100
,,,1Re

1

4321 ×
−

= ∑
=

M

i iy
ixixixixPiy

M
    (21) 
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and  

 
( ) ( ) ( ) ( ) ( )( )

( )∑
=









−×

−

−
=

M

i iy
ixixixixPiy

M 1

4321 Re%100
,,,

1
1Rv   (22) 

 In (21) and (22), M is the number of experimental data sets; ( )iy  is the i-th 

measured value of the solder spot diameter; ( )ix1 , ( )ix2 , ( )ix3  and ( )ix4  are parameter 

values of the i-th experimental data set; and ( ) ( ) ( ) ( )( )ixixixixP 4321 ,,,  is the predicted 

value for the i-th experiment. 

 Using the 16 experimental data sets and their results shown in Table 2, the 

proposed GP-FR was implemented using Matlab to relate solder paste diameter and the 

operating parameters x1, x2, x3 and x4. The GP parameters are set as shown in Table 3 

with reference to (Madar et al. 2005). Since GP-FR is a stochastic method, different 

results will be obtained from different runs. To evaluate its overall performance, 30 runs 

on the GP-FR were carried out, and the mean of the 30 runs was calculated. The mean 

fitness along generations of the 30 runs is shown in a convergence curve in Figure 6. 

The model with the smallest mean training error among the 30 runs is shown 

below as: 

 
( ) ( ) ( )

( ) ( ) ( ) 42214

32

0003.0,2032.00008.0,1854.00005.0,1397.0
0071.0,8763.00058.0,1473.06985.0,1887.1

xxxxx
xxy

⋅⋅−⋅⋅−⋅+
⋅+⋅+=

 (23) 

 Re and Rv were found as 3.2580% and 0.1285 respectively.  

Using the same experimental data sets as shown in Table 2, the following 

statistical regression model was determined. 

 4321 0483.08458.00483.00914.02929.1 xxxxy ⋅+⋅+⋅−⋅−=   (24) 
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 The R2 value of the model (24) is 96.7%. Re is 4.4575% and Rv is 0.1551. Based 

on the same set of data, the following fuzzy linear regression model was also determined. 

 
( ) ( ) ( )

( ) ( ) 43

21

0025.0,0584.00051.0,8433.0
0152.0,0457.00152.0,0711.04605.1,2649.1

xx
xxy

⋅+⋅+
⋅−+⋅−+=

  (25) 

 Re and Rv were found as 4.9874% and 0.1418 respectively.  

Table 4 summarizes all the Re and Rv of the three methods, the proposed GP-FR, 

statistical regression and fuzzy regression. From Table 4, it can be seen that both the Re 

and Rv of the proposed GP-FR are smaller than those of the statistical regression and 

fuzzy linear regression. This indicates that the proposed GP-FR can fit the data sets with 

the smallest mean of errors and the smallest variance of errors. 

 To further validate the modeling performance of the GP-FR, four data sets were 

randomly selected from the 16 data sets, as shown in Table 2, as testing data sets and the 

remaining 12 data sets were used to develop a GP-FR model, a statistical regression 

model and a fuzzy linear regression model. Their prediction errors were calculated. The 

validations were repeated 12 times. We ran the GP-FR 30 times in each validation test 

and the mean of the 30 runs was calculated. Table 5 summarizes the prediction errors of 

the three methods. From the table, it can be seen that GP-FR yields the smallest mean of 

prediction errors and variance of prediction errors. Results of the 12 validation tests are 

shown in Figure 7 from which it can be seen that the prediction errors of GP-FR, for all 

the tests, are the smallest. 

  

4 Conclusion 

The existing fuzzy regression approaches are not able to model with interaction terms and 

higher order terms. In this paper, a genetic programming based fuzzy regression (GP-FR) 
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approach is proposed for modeling manufacturing processes, by which, models can be 

developed with proper interaction terms and higher order terms. The proposed GP-FR 

uses the general outcomes of GP to construct the structure of a model based on a tree 

representation. Then, a fuzzy regression algorithm is used to estimate the contributions 

and the fuzziness of each of the branches of the tree so as to determine the fuzzy 

parameters of each term of the model.  

 To validate the proposed GP-FR approach to modeling manufacturing processes, 

it has been applied to the modeling of the solder paste dispensing process, and has been 

compared with the other commonly used explicit modeling methods, statistical regression 

and fuzzy linear regression. The result shows that the smallest number of training errors 

can be achieved by GP-FR. This indicates that GP-FR is more capable to fit the data sets 

than the other two tested methods. Also, a comparison of the validation result shows that 

the smallest number of prediction errors and errors in variance can be achieved by GP-FR. 

The achievement of better results can be explained by the introduction of interaction 

terms in GP-FR, but the two most commonly used methods ignore them.  
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Table 1 Factors and their levels 

 Factor levels 

Factors Level 1 (0) Level 2 (1) 

x1, Pressure (bar) 0.276 0.827 

x2, Needle inner diameter 

(mm) 

0.041 0.584 

x3, Short size (ms) 150 500 

x4, Dwell time (ms) 0 500 
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Table 2 24 factorial experimental plan and results 

 Normalization Solder spot 

diameters 

(mm) 

j-th 

experimental 

data set 

x1(j) x2(j) x3(j) x4(j) y(j) 

1 0 0 0 0 1.1176 

2 1 0 0 0 1.1176 

3 0 1 0 0 1.2954 

4 1 1 0 0 1.2192 

5 0 0 1 0 2.1082 

6 1 0 1 0 2.1336 

7 0 1 1 0 2.2098 

8 1 1 1 0 1.9558 

9 0 0 0 1 1.3970 

10 1 0 0 1 1.3716 

11 0 1 0 1 1.2700 

12 1 1 0 1 1.1430 

13 0 0 1 1 2.1590 

14 1 0 1 1 2.1336 

15 0 1 1 1 2.1590 

16 1 1 1 1 1.9304 
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Table 3 GP parameters implemented in the GP-FR 

Population size 50 

Maximum number of evaluated individuals 5000 

Generation gap 0.9 

Probability of crossover 0.5 

Probability of mutation 0.5 

Probability of changing terminal via non-

terminal 

0.25 

Penalty factors in the fitness function (20) c1=0.5 and c2=30 
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Table 4 Comparisons of the modeling results 

 GP-FR Statistical regression Fuzzy regression 

Mean of training 

errors Re (%) 

3.2580 5.0291 4.9874 

Variance of 

training errors Rv 

0.1285 0.1551 0.1418 
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Table 5 Prediction errors of the three methods 

Validations Testing data set GP-FR Statistical 

regression 

Fuzzy linear 

regression 

1 1    13    15    16 7.7065 8.2668 9.5705 

2 1     5     6    12 8.7606 8.9494 9.7422 

3 6    12    15    16 8.9340 9.6433 9.6136 

4 3     5    10    13 6.4408 6.8848 6.3889 

5 4     6    13    16 6.4891 7.0259 7.2404 

6 2     8    15    16 6.5076 7.8022 7.9411 

7 1    10    11    14 6.7059 12.3621 9.8317 

8 1     2     4    15 6.6578 15.0754 14.6359 

9 8    12    14    16 9.2822 11.9544 12.0100 

10 1     7    11    14 6.4753 9.0530 8.0198 

11 4     7    13    16 5.5274 7.4860 6.4493 

12 4     6    15    16 5.8662 6.4916 6.6645 

Mean of prediction errors 7.1128 9.2496 9.0090 

Variance of prediction errors 1.5586 6.0657 6.8675 

 

 



 

Figure 1 The fuzzy regression model 
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Figure 2 An example of a hierarchical tree 

 

 

 

 

 

 

 

 

 

 

 

  x1    x1  x2     x2    x1      x2        x4 

+ 

- * 

* * * 



 

Figure 3 (a) Random selection of a sub-expression before crossover 

 
Figure 3 (b) Offspring produced by the crossover 
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Figure 4 Offspring produced by the mutation 
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Figure 5 Solder paste dispensing system 
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Figure 6 Convergence curve of the GP-FR 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Convergence curve of the GP-FR 
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Figure 7 Prediction errors for each testing order using statistical regression, fuzzy linear 

regression and GP-FR 


