287 research outputs found

    Density of states "width parity" effect in d-wave superconducting quantum wires

    Full text link
    We calculate the density of states (DOS) in a clean mesoscopic d-wave superconducting quantum wire, i.e. a sample of infinite length but finite width NN. For open boundary conditions, the DOS at zero energy is found to be zero if NN is even, and nonzero if NN is odd. At finite chemical potential, all chains are gapped but the qualtitative differences between even and odd NN remain.Comment: 7 pages, 8 figures, new figures and extended discussio

    Quantum Monte Carlo study of a nonmagnetic impurity in the two-dimensional Hubbard model

    Full text link
    In order to investigate the effects of nonmagnetic impurities in strongly correlated systems, Quantum Monte Carlo (QMC) simulations have been carried out for the doped two-dimensional Hubbard model with one nonmagnetic impurity. Using a bare impurity potential which is onsite and attractive, magnetic and single-particle properties have been calculated. The QMC results show that giant oscillations develop in the Knight shift response around the impurity site due to the short-range antiferromagnetic correlations. These results are useful for interpreting the NMR data on Li and Zn substituted layered cuprates.Comment: 10 pages, 7 figure

    Low-energy quasiparticle excitations in dirty d-wave superconductors and the Bogoliubov-de Gennes kicked rotator

    Get PDF
    We investigate the quasiparticle density of states in disordered d-wave superconductors. By constructing a quantum map describing the quasiparticle dynamics in such a medium, we explore deviations of the density of states from its universal form (E\propto E), and show that additional low-energy quasiparticle states exist provided (i) the range of the impurity potential is much larger than the Fermi wavelength [allowing to use recently developed semiclassical methods]; (ii) classical trajectories exist along which the pair-potential changes sign; and (iii) the diffractive scattering length is longer than the superconducting coherence length. In the classically chaotic regime, universal random matrix theory behavior is restored by quantum dynamical diffraction which shifts the low energy states away from zero energy, and the quasiparticle density of states exhibits a linear pseudogap below an energy threshold EΔ0E^* \ll \Delta_0.Comment: 4 pages, 3 figures, RevTe

    An Optical Readout TPC (O-TPC) for Studies in Nuclear Astrophysics With Gamma-Ray Beams at HIgS

    Full text link
    We report on the construction, tests, calibrations and commissioning of an Optical Readout Time Projection Chamber (O-TPC) detector operating with a CO2(80%) + N2(20%) gas mixture at 100 and 150 Torr. It was designed to measure the cross sections of several key nuclear reactions involved in stellar evolution. In particular, a study of the rate of formation of oxygen and carbon during the process of helium burning will be performed by exposing the chamber gas to intense nearly mono-energetic gamma-ray beams at the High Intensity Gamma Source (HIgS) facility. The O-TPC has a sensitive target-drift volume of 30x30x21 cm^3. Ionization electrons drift towards a double parallel grid avalanche multiplier, yielding charge multiplication and light emission. Avalanche induced photons from N2 emission are collected, intensified and recorded with a Charge Coupled Device (CCD) camera, providing two-dimensional track images. The event's time projection (third coordinate) and the deposited energy are recorded by photomultipliers and by the TPC charge-signal, respectively. A dedicated VME-based data acquisition system and associated data analysis tools were developed to record and analyze these data. The O-TPC has been tested and calibrated with 3.183 MeV alpha-particles emitted by a 148Gd source placed within its volume with a measured energy resolution of 3.0%. Tracks of alpha and 12C particles from the dissociation of 16O and of three alpha-particles from the dissociation of 12C have been measured during initial in-beam test experiments performed at the HIgS facility at Duke University. The full detection system and its performance are described and the results of the preliminary in-beam test experiments are reported.Comment: Supported by the Richard F. Goodman Yale-Weizmann Exchange Program, ACWIS, NY, and USDOE grant Numbers: DE-FG02-94ER40870 and DE-FG02-97ER4103

    A combined risk score enhances prediction of type 1 diabetes among susceptible children

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recordType 1 diabetes (T1D)-an autoimmune disease that destroys the pancreatic islets, resulting in insulin deficiency-often begins early in life when islet autoantibody appearance signals high risk1. However, clinical diabetes can follow in weeks or only after decades, and is very difficult to predict. Ketoacidosis at onset remains common2,3 and is most severe in the very young4,5, in whom it can be life threatening and difficult to treat6-9. Autoantibody surveillance programs effectively prevent most ketoacidosis10-12 but require frequent evaluations whose expense limits public health adoption13. Prevention therapies applied before onset, when greater islet mass remains, have rarely been feasible14 because individuals at greatest risk of impending T1D are difficult to identify. To remedy this, we sought accurate, cost-effective estimation of future T1D risk by developing a combined risk score incorporating both fixed and variable factors (genetic, clinical and immunological) in 7,798 high-risk children followed closely from birth for 9.3 years. Compared with autoantibodies alone, the combined model dramatically improves T1D prediction at ≥2 years of age over horizons up to 8 years of age (area under the receiver operating characteristic curve ≥ 0.9), doubles the estimated efficiency of population-based newborn screening to prevent ketoacidosis, and enables individualized risk estimates for better prevention trial selection.National Institutes of Health/National Center for Advancing Translational Sciences Clinical and Translational ScienceDiabetes Research CenterDiabetes UKWellcome TrustJDR

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV

    Get PDF
    Isolated photon production is measured in proton-proton and lead-lead collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80 GeV with the CMS detector at the LHC. The measured ET spectra are found to be in good agreement with next-to-leading-order perturbative QCD predictions. The ratio of PbPb to pp isolated photon ET-differential yields, scaled by the number of incoherent nucleon-nucleon collisions, is consistent with unity for all PbPb reaction centralities.Comment: Submitted to Physics Letters

    Subword complexes, cluster complexes, and generalized multi-associahedra

    Full text link
    In this paper, we use subword complexes to provide a uniform approach to finite type cluster complexes and multi-associahedra. We introduce, for any finite Coxeter group and any nonnegative integer k, a spherical subword complex called multi-cluster complex. For k=1, we show that this subword complex is isomorphic to the cluster complex of the given type. We show that multi-cluster complexes of types A and B coincide with known simplicial complexes, namely with the simplicial complexes of multi-triangulations and centrally symmetric multi-triangulations respectively. Furthermore, we show that the multi-cluster complex is universal in the sense that every spherical subword complex can be realized as a link of a face of the multi-cluster complex.Comment: 26 pages, 3 Tables, 2 Figures; final versio

    Determination of the Form Factors for the Decay B0 --> D*-l+nu_l and of the CKM Matrix Element |Vcb|

    Get PDF
    We present a combined measurement of the Cabibbo-Kobayashi-Maskawa matrix element Vcb|V_{cb}| and of the parameters ρ2\rho^2, R1R_1, and R2R_2, which fully characterize the form factors of the B0D+νB^0 \to D^{*-}\ell^{+}\nu_\ell decay in the framework of HQET, based on a sample of about 52,800 B0D+νB^0 \to D^{*-}\ell^{+}\nu_\ell decays recorded by the BABAR detector. The kinematical information of the fully reconstructed decay is used to extract the following values for the parameters (where the first errors are statistical and the second systematic): ρ2=1.156±0.094±0.028\rho^2 = 1.156 \pm 0.094 \pm 0.028, R1=1.329±0.131±0.044R_1 = 1.329 \pm 0.131 \pm 0.044, R2=0.859±0.077±0.022R_2 = 0.859 \pm 0.077 \pm 0.022, F(1)Vcb=(35.03±0.39±1.15)×103\mathcal{F}(1)|V_{cb}| = (35.03 \pm 0.39 \pm 1.15) \times 10^{-3}. By combining these measurements with the previous BABAR measurements of the form factors which employs a different technique on a partial sample of the data, we improve the statistical accuracy of the measurement, obtaining: ρ2=1.179±0.048±0.028,R1=1.417±0.061±0.044,R2=0.836±0.037±0.022,\rho^2 = 1.179 \pm 0.048 \pm 0.028, R_1 = 1.417 \pm 0.061 \pm 0.044, R_2 = 0.836 \pm 0.037 \pm 0.022, and F(1)Vcb=(34.68±0.32±1.15)×103. \mathcal{F}(1)|V_{cb}| = (34.68 \pm 0.32 \pm 1.15) \times 10^{-3}. Using the lattice calculations for the axial form factor F(1)\mathcal{F}(1), we extract Vcb=(37.74±0.35±1.25±1.441.23)×103|V_{cb}| =(37.74 \pm 0.35 \pm 1.25 \pm ^{1.23}_{1.44}) \times 10^{-3}, where the third error is due to the uncertainty in F(1)\mathcal{F}(1)
    corecore