We investigate the quasiparticle density of states in disordered d-wave
superconductors. By constructing a quantum map describing the quasiparticle
dynamics in such a medium, we explore deviations of the density of states from
its universal form (∝E), and show that additional low-energy
quasiparticle states exist provided (i) the range of the impurity potential is
much larger than the Fermi wavelength [allowing to use recently developed
semiclassical methods]; (ii) classical trajectories exist along which the
pair-potential changes sign; and (iii) the diffractive scattering length is
longer than the superconducting coherence length. In the classically chaotic
regime, universal random matrix theory behavior is restored by quantum
dynamical diffraction which shifts the low energy states away from zero energy,
and the quasiparticle density of states exhibits a linear pseudogap below an
energy threshold E∗≪Δ0.Comment: 4 pages, 3 figures, RevTe