90 research outputs found

    An sTGC Prototype Readout System for ATLAS New-Small-Wheel Upgrade

    Full text link
    This paper presents a readout system designed for testing the prototype of Small-Strip Thin Gap Chamber (sTGC), which is one of the main detector technologies used for ATLAS New-Small-Wheel Upgrade. This readout system aims at testing one full-size sTGC quadruplet with cosmic muon triggers

    A Domain Oriented LDA Model for Mining Product Defects from Online Customer Reviews

    Get PDF
    Online reviews provide important demand-side knowledge for product manufacturers to improve product quality. However, discovering and quantifying potential products’ defects from large amounts of online reviews is a nontrivial task. In this paper, we propose a Latent Product Defect Mining model that identifies critical product defects. We define domain-oriented key attributes, such as components and keywords used to describe a defect, and build a novel LDA model to identify and acquire integral information about product defects. We conduct comprehensive evaluations including quantitative and qualitative evaluations to ensure the quality of discovered information. Experimental results show that the proposed model outperforms the standard LDA model, and could find more valuable information. Our research contributes to the extant product quality analytics literature and has significant managerial implications for researchers, policy makers, customers, and practitioners

    Experimental study of PLLA/INH slow release implant fabricated by three dimensional printing technique and drug release characteristics in vitro

    Get PDF
    BACKGROUND: Local slow release implant provided long term and stable drug release in the lesion. The objective of this study was to fabricate biodegradable slow release INH/PLLA tablet via 3 dimensional printing technique (3DP) and to compare the drug release characteristics of three different structured tablets in vitro. METHODS: Three different drug delivery systems (columnar-shaped tablet (CST), doughnut-shaped tablet (DST) and multilayer doughnut-shaped tablet (MDST)) were manufactured by the three dimensional printing machine and isoniazid was loaded into the implant. Dynamic soaking method was used to study the drug release characteristics of the three implants. MTT cytotoxicity test and direct contact test were utilized to study the biocompatibility of the implant. The microstructures of the implants’ surfaces were observed with electron microscope. RESULTS: The PLLA powder in the tablet could be excellently combined through 3DP without disintegration. Electron microscope observations showed that INH distributed evenly on the surface of the tablet in a “nest-shaped” way, while the surface of the barrier layer in the multilayer doughnut shaped tablet was compact and did not contain INH. The concentration of INH in all of the three tablets were still higher than the effective bacteriostasis concentration (Isoniazid: 0.025 ~ 0.05 Όg/ml) after 30 day’s release in vitro. All of the tablets showed initial burst release of the INH in the early period. Drug concentration of MDST became stable and had little fluctuation starting from the 6th day of the release. Drug concentration of DST and CST decreased gradually and the rate of decrease in concentration was faster in DST than CST. MTT cytotoxicity test and direct contact test indicated that the INH-PLLA tablet had low cytotoxicity and favorable biocompatibility. CONCLUSIONS: Three dimensional printing technique was a reliable technique to fabricate complicated implants. Drug release pattern in MDST was the most stable among the three implants. It was an ideal drug delivery system for the antibiotics. Biocompatibility tests demonstrated that the INH-PLLA implant did not have cytotoxicity. The multilayer donut-shaped tablet provided a new constant slow release method after an initial burst for the topical application of the antibiotic

    Do Facebook Activities Increase Sales?

    Get PDF
    Facebook is a one of the most popular social media platforms and its increasing adoption by business is leading to the shift of traditional marketing to social marketing (Nair 2011). This study investigates two related questions: 1) whether the use of Facebook impacts companies’ sales; 2) whether the increased Facebook activities leads to higher companies’ sales. We find that, on average, companies adopted Facebook have sales 0.1% higher than those not. We also find if a company increases its Facebook posts (interactions) by 1%, its annual sales will increase by roughly 0.06% (0.03%). Our study provides evidence that Facebook activities are significantly and positively associated with companies’ annual sales though their impacts are relatively small in terms of effect size. We also provide caveats to the interpretation of our results and discuss directions for future research

    Money Talks: A Predictive Model on Crowdfunding Success Using Project Description

    Get PDF
    Existing research of crowdfunding mainly focuses on the basic properties of the project such as category and goal, the information content of the project, however, is barely studied. By introducing Elaboration Likelihood Model into crowdfunding context and using a large dataset obtained from Kickstarter, a popular crowdfunding platform, we study the influence of project descriptions in terms of argument quality and source credibility, and investigate their impacts on funding success. We find information disclosed in project descriptions is associated with funding success. We also examine the practical impacts of project description by using a predictive model. Results show that our model can predict with an accuracy rate of 73% (71% in F-measure), which represents an improvement of 15 percentage points over the baseline model and 4 percentage points over the mainstream model. Overall, our results provide insights to researchers, project owners and backers to better study and use crowdfunding platforms

    Microbial succession and its effect on the formation of umami peptides during sufu fermentation

    Get PDF
    Sufu, a traditional Chinese fermented food, is famous for its unique flavor, especially umami. However, the formation mechanism of its umami peptides is still unclear. Here, we investigated the dynamic change of both umami peptides and microbial communities during sufu production. Based on peptidomic analysis, 9081 key differential peptides were identified, which mainly involved in amino acid transport and metabolism, peptidase activity and hydrolase activity. Twenty-six high-quality umami peptides with ascending trend were recognized by machine learning methods and Fuzzy c-means clustering. Then, through correlation analysis, five bacterial species (Enterococcus italicus, Leuconostoc citreum, L. mesenteroides, L. pseudomesenteroides, Tetragenococcus halophilus) and two fungi species (Cladosporium colombiae, Hannaella oryzae) were identified to be the core functional microorganisms for umami peptides formation. Functional annotation of five lactic acid bacteria indicated their important functions to be carbohydrate metabolism, amino acid metabolism and nucleotide metabolism, which proved their umami peptides production ability. Overall, our results enhanced the understanding of microbial communities and the formation mechanism of umami peptides in sufu, providing novel insights for quality control and flavor improvement of tofu products

    Scanning Test System Prototype of p/sFEB for the ATLAS Phase-I sTGC Trigger Upgrade

    Full text link
    The Pad Front End Board (pFEB) and the Strip Front End Board (sFEB) are developed for the ATLAS Phase-I sTGC Trigger Upgrade. The pFEB is used to to gather and analyze pads trigger, and the sFEB is developed to accept the pad trigger to define the regions-of-interest for strips readout. The performance of p/sFEBs must be confirmed before they are mounted on the sTGC detector. We will present the scanning test system prototype which is designed according to the test requirements of the p/sFEB. In this test system prototype, a simulation signal board is developed to generate different types of signal to the p/sFEB. PC software and FPGA XADC cooperate to achieve the scan test of analog parameter

    Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed

    Get PDF
    Deoxynivalenol (DON) is a mycotoxin primarily produced by Fusarium fungi, occurring predominantly in cereal grains. Following the request of the European Commission, the CONTAM Panel assessed the risk to animal and human health related to DON, 3-acetyl-DON (3-Ac-DON), 15-acetyl-DON (15-Ac-DON) and DON-3-glucoside in food and feed. A total of 27,537, 13,892, 7,270 and 2,266 analytical data for DON, 3-Ac-DON, 15-Ac-DON and DON-3-glucoside, respectively, in food, feed and unprocessed grains collected from 2007 to 2014 were used. For human exposure, grains and grain-based products were main sources, whereas in farm and companion animals, cereal grains, cereal by-products and forage maize contributed most. DON is rapidly absorbed, distributed, and excreted. Since 3-Ac-DON and 15-Ac-DON are largely deacetylated and DON-3-glucoside cleaved in the intestines the same toxic effects as DON can be expected. The TDI of 1 ÎŒg/kg bw per day, that was established for DON based on reduced body weight gain in mice, was therefore used as a group-TDI for the sum of DON, 3-Ac-DON, 15-Ac-DON and DON-3-glucoside. In order to assess acute human health risk, epidemiological data from mycotoxicoses were assessed and a group-ARfD of 8 ÎŒg/kg bw per eating occasion was calculated. Estimates of acute dietary exposures were below this dose and did not raise a health concern in humans. The estimated mean chronic dietary exposure was above the group-TDI in infants, toddlers and other children, and at high exposure also in adolescents and adults, indicating a potential health concern. Based on estimated mean dietary concentrations in ruminants, poultry, rabbits, dogs and cats, most farmed fish species and horses, adverse effects are not expected. At the high dietary concentrations, there is a potential risk for chronic adverse effects in pigs and fish and for acute adverse effects in cats and farmed mink

    Neuroprotective Potential of Punicalagin, a Natural Component of Pomegranate Polyphenols: A Review

    No full text
    Neurodegenerative diseases (NDs), such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), are major health problems worldwide. To date, available remedies against NDs are limited. In fact, current treatment options include drug intervention and nutritional therapy, which mainly focus on the repair of neuronal damage and functional monitoring. However, these treatments do not completely alleviate disease symptoms. Recently, eliminating harmful molecules, such as reactive oxygen species, and inhibiting neuroinflammation have become potential strategies recommended by many researchers. Accordingly, remarkable interest has been generated in recent years regarding natural products, including polyphenols, that provide neuroprotective effects. In this review, we aimed to provide experimental evidence of the therapeutic potential of punicalagin (PUN), a prevailing compound in pomegranate polyphenols with antioxidant activity. Overall, the chemistry, methods of determination, characteristics of metabolism, transformation mechanisms of action, and neuroprotective effects of PUN on NDs are summarised to provide a scientific basis for elucidating the therapeutic mechanisms and targets of NDs

    Table_1_Microbial succession and its effect on the formation of umami peptides during sufu fermentation.DOCX

    No full text
    Sufu, a traditional Chinese fermented food, is famous for its unique flavor, especially umami. However, the formation mechanism of its umami peptides is still unclear. Here, we investigated the dynamic change of both umami peptides and microbial communities during sufu production. Based on peptidomic analysis, 9081 key differential peptides were identified, which mainly involved in amino acid transport and metabolism, peptidase activity and hydrolase activity. Twenty-six high-quality umami peptides with ascending trend were recognized by machine learning methods and Fuzzy c-means clustering. Then, through correlation analysis, five bacterial species (Enterococcus italicus, Leuconostoc citreum, L. mesenteroides, L. pseudomesenteroides, Tetragenococcus halophilus) and two fungi species (Cladosporium colombiae, Hannaella oryzae) were identified to be the core functional microorganisms for umami peptides formation. Functional annotation of five lactic acid bacteria indicated their important functions to be carbohydrate metabolism, amino acid metabolism and nucleotide metabolism, which proved their umami peptides production ability. Overall, our results enhanced the understanding of microbial communities and the formation mechanism of umami peptides in sufu, providing novel insights for quality control and flavor improvement of tofu products.</p
    • 

    corecore