449 research outputs found

    ZeroQuant-HERO: Hardware-Enhanced Robust Optimized Post-Training Quantization Framework for W8A8 Transformers

    Full text link
    Quantization techniques are pivotal in reducing the memory and computational demands of deep neural network inference. Existing solutions, such as ZeroQuant, offer dynamic quantization for models like BERT and GPT but overlook crucial memory-bounded operators and the complexities of per-token quantization. Addressing these gaps, we present a novel, fully hardware-enhanced robust optimized post-training W8A8 quantization framework, ZeroQuant-HERO. This framework uniquely integrates both memory bandwidth and compute-intensive operators, aiming for optimal hardware performance. Additionally, it offers flexibility by allowing specific INT8 modules to switch to FP16/BF16 mode, enhancing accuracy.Comment: 8 pages, 2 figure

    Counter‐Credit‐Risk Yield Spreads: A Puzzle in China's Corporate Bond Market

    Get PDF
    yesIn this paper, using China’s risk-free and corporate zero yields together with aggregate credit risk measures and various control variables from 2006 to 2013, we document a puzzle of counter-credit-risk corporate yield spreads. We interpret this puzzle as a symptom of the immaturity of China’s credit bond market, which reveals a distorted pricing mechanism latent in the fundamental of this market. We also find interesting results about relationships between corporate yield spreads and interest rates as well as risk premia and the stock index, and these results are somewhat attributed to this puzzle

    Magnetic field-induced non-trivial electronic topology in Fe3−xGeTe2

    Get PDF
    The anomalous Hall, Nernst and thermal Hall coefficients of Fe3x_{3-x}GeTe2_2 display several features upon cooling, like a reversal in the Nernst signal below T=50T = 50 K pointing to a topological transition (TT) associated to the development of magnetic spin textures. Since the anomalous transport variables are related to the Berry curvature, a possible TT might imply deviations from the Wiedemann-Franz (WF) law. However, the anomalous Hall and thermal Hall coefficients of Fe3x_{3-x}GeTe2_2 are found, within our experimental accuracy, to satisfy the WF law for magnetic-fields μ0H\mu_0H applied along its inter-layer direction. Surprisingly, large anomalous transport coefficients are also observed for μ0H\mu_0H applied along the planar \emph{a}-axis as well as along the gradient of the chemical potential, a configuration that should not lead to their observation due to the absence of Lorentz force. However, as μ0H\mu_0H \| \emph{a}-axis is increased, magnetization and neutron scattering indicate just the progressive canting of the magnetic moments towards the planes followed by their saturation. These anomalous planar quantities are found to not scale with the component of the planar magnetization (MM_{\|}), showing instead a sharp decrease beyond μ0H=\sim \mu_0 H_{\|} = 4 T which is the field required to align the magnetic moments along μ0H\mu_0 H_{\|}. We argue that locally chiral spin structures, such as skyrmions, and possibly skyrmion tubes, lead to a field dependent spin-chirality and hence to a novel type of topological anomalous transport. Locally chiral spin-structures are captured by our Monte-Carlo simulations incorporating small Dzyaloshinskii-Moriya and biquadratic exchange interactions.Comment: 34 pages, 10 figures, submitted to Applied Physics Review

    Higher-Order Assembly of BRCC36-KIAA0157 Is Required for DUB Activity and Biological Function

    Get PDF
    BRCC36 is a Zn²⁺-dependent deubiquitinating enzyme (DUB) that hydrolyzes lysine-63-linked ubiquitin chains as part of distinct macromolecular complexes that participate in either interferon signaling or DNA-damage recognition. The MPN⁺ domain protein BRCC36 associates with pseudo DUB MPN⁻ proteins KIAA0157 or Abraxas, which are essential for BRCC36 enzymatic activity. To understand the basis for BRCC36 regulation, we have solved the structure of an active BRCC36-KIAA0157 heterodimer and an inactive BRCC36 homodimer. Structural and functional characterizations show how BRCC36 is switched to an active conformation by contacts with KIAA0157. Higher-order association of BRCC36 and KIAA0157 into a dimer of heterodimers (super dimers) was required for DUB activity and interaction with targeting proteins SHMT2 and RAP80. These data provide an explanation of how an inactive pseudo DUB allosterically activates a cognate DUB partner and implicates super dimerization as a new regulatory mechanism underlying BRCC36 DUB activity, subcellular localization, and biological function

    Functional Analysis of Conserved Motifs in Influenza Virus PB1 Protein

    Get PDF
    The influenza virus RNA polymerase complex is a heterotrimer composed of the PB1, PB2, and PA subunits. PB1, the catalytic core and structural backbone of the polymerase, possesses four highly conserved amino acid motifs that are present among all viral RNA-dependent RNA polymerases. A previous study demonstrated the importance of several of these conserved amino acids in PB1 for influenza polymerase activity through mutational analysis. However, a small number of viruses isolated in nature possesses non-consensus amino acids in one of the four motifs, most of which have not been tested for their replicative ability. Here, we assessed the transcription/replication activities of 25 selected PB1 mutations found in natural isolates by using minireplicon assays in human and avian cells. Most of the mutations tested significantly reduced polymerase activity. One exception was mutation K480R, observed in several pandemic (H1N1) 2009 viruses, which slightly increased polymerase activity relative to wild-type. However, in the background of the pandemic A/California/04/2009 (H1N1) virus, this mutation did not affect virus titers in cell culture. Our results further demonstrate the functional importance of the four conserved PB1 motifs in influenza virus transcription/replication. The finding of natural isolates with non-consensus PB1 motifs that are nonfunctional in minireplicon assays suggests compensatory mutations and/or mixed infections which may have ‘rescued’ the inactive PB1 protein

    Release from belowground enemies and shifts in root traits as interrelated drivers of alien plant invasion success: a hypothesis

    Get PDF
    Our understanding of the interrelated mechanisms driving plant invasions, such as the interplay between enemy release and resource-acquisition traits, is biased by an aboveground perspective. To address this bias, I hypothesize that plant release from belowground enemies (especially fungal pathogens) will give invasive plant species a fitness advantage in the alien range, via shifts in root traits (e.g., increased specific root length and branching intensity) that increase resource uptake and competitive ability compared to native species in the alien range, and compared to plants of the invader in its native range. Such root-trait changes could be ecological or evolutionary in nature. I explain how shifts in root traits could occur as a consequence of enemy release and contribute to invasion success of alien plants, and how they could be interrelated with other potential belowground drivers of invasion success (allelopathy, mutualist enhancement). Finally, I outline the approaches that could be taken to test whether belowground enemy release results in increased competitive ability and nutrient uptake by invasive alien plants, via changes in root traits in the alien range
    corecore