451 research outputs found

    Fatal systemic toxoplasmosis in a 3-month-old young tibetan goat (Capra hircus)

    Get PDF
    Background: Toxoplasmosis is one of the most common parasitic infections in both humans and animals. It is a frequent cause of abortion and stillbirth in intermediate hosts, especially sheep and goats but rarely causes fatal clinical form in adult animals. Case presentation: In contrast, the study reports an unusual fatal case of toxoplasmosis in a young goat naturally infected with type II strain of Toxoplasma gondii. A three-month-old female goat was presented with dyspnea and died few days later. Grossly, lungs were firm, edematous and mottled with disseminated whitish areas. Generalized lymphadenopathy was found. The histopathological examination showed necrotic interstitial bronchopneumonia and necrotizing lymphadenitis with intralesional free and clustered within macrophages tachyzoites of T. gondii. DNA extracted from lungs and lymph nodes was positive for T. gondii by a fast qPCR. PCR-RFLP analysis and sequencing of GRA6 gene showed that the isolated strains belonged to type II genotype. Conclusions: This is an unusual report of acute systemic toxoplasmosis caused by the type II strain of T. gondii with a fatal outcome in a young goat

    Electronic and Magnetic Structures of Sr2FeMoO6

    Get PDF
    We have investigated the electronic and magnetic structures of Sr2FeMoO6 employing site-specific direct probes, namely x-ray absorption spectroscopy with linearly and circularly polarized photons. In contrast to some previous suggestions, the results clearly establish that Fe is in the formal trivalent state in this compound. With the help of circularly polarized light, it is unambiguously shown that the moment at the Mo sites is below the limit of detection (< 0.25mu_B), resolving a previous controversy. We also show that the decrease of the observed moment in magnetization measurements from the theoretically expected value is driven by the presence of mis-site disorder between Fe and Mo sites.Comment: To appear in Physical Review Letter

    Limits on Dark Matter Effective Field Theory Parameters with CRESST-II

    Full text link
    CRESST is a direct dark matter search experiment, aiming for an observation of nuclear recoils induced by the interaction of dark matter particles with cryogenic scintillating calcium tungstate crystals. Instead of confining ourselves to standard spin-independent and spin-dependent searches, we re-analyze data from CRESST-II using a more general effective field theory (EFT) framework. On many of the EFT coupling constants, improved exclusion limits in the low-mass region (< 3-4 GeV) are presented.Comment: 7 pages, 9 figure

    First results from the CRESST-III low-mass dark matter program

    Full text link
    The CRESST experiment is a direct dark matter search which aims to measure interactions of potential dark matter particles in an earth-bound detector. With the current stage, CRESST-III, we focus on a low energy threshold for increased sensitivity towards light dark matter particles. In this manuscript we describe the analysis of one detector operated in the first run of CRESST-III (05/2016-02/2018) achieving a nuclear recoil threshold of 30.1eV. This result was obtained with a 23.6g CaWO4_4 crystal operated as a cryogenic scintillating calorimeter in the CRESST setup at the Laboratori Nazionali del Gran Sasso (LNGS). Both the primary phonon/heat signal and the simultaneously emitted scintillation light, which is absorbed in a separate silicon-on-sapphire light absorber, are measured with highly sensitive transition edge sensors operated at ~15mK. The unique combination of these sensors with the light element oxygen present in our target yields sensitivity to dark matter particle masses as low as 160MeV/c2^2.Comment: 9 pages, 9 figure

    Study of CP violation in Dalitz-plot analyses of B0 --> K+K-KS, B+ --> K+K-K+, and B+ --> KSKSK+

    Get PDF
    We perform amplitude analyses of the decays B0→K+K−KS0B^0 \to K^+K^-K^0_S, B+→K+K−K+B^+ \rightarrow K^+K^-K^+, and B+→KS0KS0K+B^+ \to K^0_S K^0_S K^+, and measure CP-violating parameters and partial branching fractions. The results are based on a data sample of approximately 470×106470\times 10^6 BBˉB\bar{B} decays, collected with the BABAR detector at the PEP-II asymmetric-energy BB factory at the SLAC National Accelerator Laboratory. For B+→K+K−K+B^+ \to K^+K^-K^+, we find a direct CP asymmetry in B+→ϕ(1020)K+B^+ \to \phi(1020)K^+ of ACP=(12.8±4.4±1.3)A_{CP}= (12.8\pm 4.4 \pm 1.3)%, which differs from zero by 2.8σ2.8 \sigma. For B0→K+K−KS0B^0 \to K^+K^-K^0_S, we measure the CP-violating phase ÎČeff(ϕ(1020)KS0)=(21±6±2)∘\beta_{\rm eff} (\phi(1020)K^0_S) = (21\pm 6 \pm 2)^\circ. For B+→KS0KS0K+B^+ \to K^0_S K^0_S K^+, we measure an overall direct CP asymmetry of ACP=(4−5+4±2)A_{CP} = (4 ^{+4}_{-5} \pm 2)%. We also perform an angular-moment analysis of the three channels, and determine that the fX(1500)f_X(1500) state can be described well by the sum of the resonances f0(1500)f_0(1500), f2â€Č(1525)f_2^{\prime}(1525), and f0(1710)f_0(1710).Comment: 35 pages, 68 postscript figures. v3 - minor modifications to agree with published versio

    COSINUS: Cryogenic Calorimeters for the Direct Dark Matter Search with NaI Crystals

    Get PDF
    COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches) is an experiment employing cryogenic calorimeters, dedicated to direct dark matter search in underground laboratories. Its goal is to cross-check the annual modulation signal the DAMA collaboration has been detecting for about 20 years (Bernabei et al. in Nucl Part Phys Proc 303-305:74-79, 2018. 10.1016/j.nuclphysbps.2019.03.015) and which has been ruled out by other experiments in certain dark matter scenarios. COSINUS can provide a model-independent test by the use of the same target material (NaI), with the additional chance of discriminating beta/gamma events from nuclear recoils on an event-by-event basis, by the application of a well-established temperature sensor technology developed within the CRESST collaboration. Each module is constituted by two detectors: the light detector, that is a silicon beaker equipped with a transition edge sensor (TES), and the phonon detector, a small cubic NaI crystal interfaced with a carrier of a harder material (e.g. CdWO4), also instrumented with a TES. This technology had so far never been applied to NaI crystals because of several well-known obstacles, and COSINUS is the first experiment which succeeded in operating NaI crystals as cryogenic calorimeters. Here, we present the COSINUS project, describe the achievements and the challenges of the COSINUS prototype development and discuss the status and the perspectives of this NaI-based cryogenic frontier

    System Test of the ATLAS Muon Spectrometer in the H8 Beam at the CERN SPS

    Get PDF
    An extensive system test of the ATLAS muon spectrometer has been performed in the H8 beam line at the CERN SPS during the last four years. This spectrometer will use pressurized Monitored Drift Tube (MDT) chambers and Cathode Strip Chambers (CSC) for precision tracking, Resistive Plate Chambers (RPCs) for triggering in the barrel and Thin Gap Chambers (TGCs) for triggering in the end-cap region. The test set-up emulates one projective tower of the barrel (six MDT chambers and six RPCs) and one end-cap octant (six MDT chambers, A CSC and three TGCs). The barrel and end-cap stands have also been equipped with optical alignment systems, aiming at a relative positioning of the precision chambers in each tower to 30-40 micrometers. In addition to the performance of the detectors and the alignment scheme, many other systems aspects of the ATLAS muon spectrometer have been tested and validated with this setup, such as the mechanical detector integration and installation, the detector control system, the data acquisition, high level trigger software and off-line event reconstruction. Measurements with muon energies ranging from 20 to 300 GeV have allowed measuring the trigger and tracking performance of this set-up, in a configuration very similar to the final spectrometer. A special bunched muon beam with 25 ns bunch spacing, emulating the LHC bunch structure, has been used to study the timing resolution and bunch identification performance of the trigger chambers. The ATLAS first-level trigger chain has been operated with muon trigger signals for the first time
    • 

    corecore