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Abstract
COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Under-
ground Searches) is an experiment employing cryogenic calorimeters, dedicated 
to direct dark matter search in underground laboratories. Its goal is to cross-check 
the annual modulation signal the DAMA collaboration has been detecting for about 
20 years (Bernabei et al. in Nucl Part Phys Proc 303–305:74–79, 2018. https​://doi.
org/10.1016/j.nuclp​hysbp​s.2019.03.015) and which has been ruled out by other 
experiments in certain dark matter scenarios. COSINUS can provide a model-inde-
pendent test by the use of the same target material (NaI), with the additional chance 
of discriminating �∕� events from nuclear recoils on an event-by-event basis, by the 
application of a well-established temperature sensor technology developed within 
the CRESST collaboration. Each module is constituted by two detectors: the light 
detector, that is a silicon beaker equipped with a transition edge sensor (TES), and 
the phonon detector, a small cubic NaI crystal interfaced with a carrier of a harder 
material (e.g. CdWO

4
 ), also instrumented with a TES. This technology had so far 

never been applied to NaI crystals because of several well-known obstacles, and 
COSINUS is the first experiment which succeeded in operating NaI crystals as cryo-
genic calorimeters. Here, we present the COSINUS project, describe the achieve-
ments and the challenges of the COSINUS prototype development and discuss the 
status and the perspectives of this NaI-based cryogenic frontier.
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1  Introduction

During the twentieth century, collecting experimental data to make predictions on 
a cosmological level has become not only possible, but one of the most powerful 
tools to probe the Universe. Cosmology and astrophysics provide evidence for the 
existence of an additional form of matter, whose density is five times larger than 
that of ordinary matter. This new component of matter is invisible and its nature is 
unknown; that is why it is called dark matter (DM). Numerous experimental cam-
paigns aiming at direct DM detection are constraining the DM parameter space. 
Some excesses have been interpreted as positive detection, often not confirmed 
by the following experimental run. However, this is not the case for the statisti-
cally robust result from the DAMA/LIBRA experiment, which has been detecting 
for about 20 years a signal which is compatible with DM in our galaxy  [1]. This 
is in tension with null results presented as sensitivity curves by other experiments. 
COSINUS, which employs cryogenic calorimeter working at milli-Kelvin tempera-
ture, will provide a cross-check of the DAMA/LIBRA results using the same target 
material to exclude possible material-dependent effects [2] and will give a decisive 
answer to this long-standing debate [3–5].

2 � Experimental Concept

The COSINUS prototype is a scintillating cryogenic calorimeter operated at milli-
Kelvin temperature  [6]. The target material is a small cubic NaI crystal installed 
in a copper housing (Fig. 1, left panel). The detection principle relies on the meas-
urement of the temperature increase caused by an energy deposition in the tar-
get material. For this measurement, a temperature sensor is required. COSINUS 
applies transition edge sensors (TES), a technology developed within the CRESST 
collaboration. These highly sensitive temperature sensors consist of tungsten thin 
films (W-TES), whose specifics are described below. If evaporated directly onto 

Fig. 1   COSINUS module prototype. Left: Photograph of a NaI crystal and a carrier crystal installed in 
a copper housing and exposed to UV radiation to show the luminescence effect. Center: Silicon beaker 
enclosing the NaI crystal, equipped with a transition edge sensor (TES), visible on top of the beaker sur-
face. Right: Schematic drawing of the complete module (color figure online)
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the absorber, a good thermal contact can be achieved  [7]. However, since NaI is 
hygroscopic, the evaporation directly on its surface is not feasible.1 Therefore, the 
small cube is interfaced with another crystal (e.g. CdWO 4 ), named carrier, of about 
40 mm in diameter and ∼ 1 − 2 mm in thickness, which is instrumented with a TES 
instead. The interface between NaI and carrier is made of amorphous materials, like 
epoxy resin or silicone oil. Energy depositions in the target material cause lattice 
vibrations whose energy flux is transmitted to the carrier and measured by the TES 
as an increase in temperature. The NaI crystal, interfaced with the carrier and the 
TES, is the phonon detector. The detected scintillation light, which accounts for 
about 10% with respect to the energy converted into heat, is measured by a beaker-
shaped light absorber made from silicon and enclosing the NaI target. The silicon 
beaker dimensions are: 40 mm in diameter, 39 mm in height and a wall-thickness 
of about 420 μ m . Its mass is about 9 g. It is produced by Optec2 and is machined 
from bulk silicon, by using a hole saw cutter drill. The surfaces are polished to 
optical quality. The silicon beaker is also instrumented with a TES (Fig. 1, central 
panel). The silicon beaker and the carrier disk are designed to optimise the active 
surrounding coverage of the target material, in order to fight the surface �-induced 
background, whose back-to-back emission can produce a nuclear recoil analogous 
to the expected DM signal. The silicon beaker, equipped with the TES, is the light 
detector.

The W-TES (thickness of 200 nm) is evaporated on the carrier and operated in its 
transition from normal to superconducting state, commonly around 15–20 mK. An 
energy deposition results in a temperature increase, which can be measured by the 
resistance change of the TES—the steeper the transition, the more sensitive the TES. 
The TES resistance works as electric component of a readout circuit, and the out-
put voltage is finally registered by SQUID (Superconducting Quantum Interference 
Device) amplifiers. The W-TES technology used here was pushed within CRESST 
to a sensitivity level of about 4.6 eV baseline resolution ( � ) for a 24 g CaWO4 crys-
tal (CRESST-III) [8].

The dual-channel readout of heat and light is a powerful tool for particle dis-
crimination, since the amount of deposited energy going into the production of light 
depends on the type of event. The suppression expected for nuclear scatterings and 
�-events with respect to �∕�-events is called light quenching. The ratio between the 
amount of energy going into light and the amount of energy converted into heat 
allows for particle discrimination.

1  Photolithography and handling NaI in electron-beam evaporation systems and sputter machines are not 
feasible for guaranteeing both a controlled humidity-free atmosphere and temperature far away from the 
melting point.
2  https​://www.optec​-muenc​hen.de/.

https://www.optec-muenchen.de/
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3 � Status of the Prototype Development

Improving the radio-purity of NaI crystals is an important step of the COSINUS 
prototype development. For what concerns potassium concentration, achieving high 
radio-purity is crucial because of the 40K-decay emission, which is a source of back-
ground in the region of interest of DAMA. In collaboration with SICCAS (Shanghai 
Institute of Ceramics, Chinese Academy of Science), COSINUS achieved the result 
of growing NaI crystals with potassium concentrations of 5–9 ppb at crystals’ nose 
and 22–35 ppb at crystals’ tail [9]. COSINUS crystals’ potassium concentration at 
the crystals’ nose is below the one of DAMA crystals.

With the beaker-shaped light-absorber design, ∼ 13% ( ∼ 10% ) of the energy 
deposited in pure (doped) NaI crystals is measured in the light detector  [10]. The 
light-energy threshold achieved is ∼ 0.6 keV

ee
 (electron equivalent). The phonon-

energy threshold is still far from the COSINUS goal of 1 keV,3 although it has been 
improved with respect to the threshold reached in  [10] that was ∼ 8.26 keV (the 
best recent prototypes arrive at 5–6 keV). The challenging phonon-threshold opti-
misation is attributed to the vibrational properties of NaI, which require an accurate 
choice of the temperature sensor (e.g. TES/NTD and geometry) and of the general 
detector design (e.g. carrier material).

3.1 � Studies on Pulse Formation

Both theoretical and experimental studies on the pulse formation in a COSINUS-
like detector set-up are ongoing. From the theory side, the effort is twofold: (1) writ-
ing down a system of equations which describes the time dependence of the TES 
response as function of all the thermal couplings involved and (2) studying the 
vibrational properties of the NaI lattice to predict reasonable values for the param-
eters of the model.

Modelling of the TES response Results on pulse shape analysis from the first 
NaI detector run  [11] (see  [12] for preliminary studies on CsI, which anticipated 
the COSINUS project) are based on  [13]. The model in  [13] refers to bolometric 
detectors working in a scheme similar to the one of COSINUS, but without the car-
rier. This model was used for a CRESST detector with a carrier [14] and provided a 
good description of the detector response [15]. For this reason, it was also used for 
the COSINUS module. The solution of the system of equations describing the time-
dependent response of an ideal temperature sensor T

e
(t) 4, is, 5

3  Note that in the phonon channel, the energy threshold is already a nuclear recoil energy threshold. As 
comparison, in DAMA/LIBRA, the threshold of ∼ 1 keV

ee
 corresponds to ∼ 3 keV in a recoil off Na, for 

a light-quenching factor of ∼ 0.3, and to ∼ 10 keV in a recoil off I, for a light-quenching factor of ∼ 0.1.
4  Equation  1 neglects the finite thermal conductance along the film; that is why the sensor is ‘ideal’. 
In [13], also the realistic case which considers the finite thermal conductance along the film is discussed 
and solved. The explicit dependence on the physical parameters involved (conductances, heat capacity, 
power input, … ) is also given there.
5  Equation 1 is the solution of the differential system in Eqs. 8–9 of [13] if the amplitude A

n
 in Eq. 12 

of [13] is corrected by a minus sign overall.
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where T
b
 is the temperature of the thermal bath, A

n
 and A

t
 are interpreted as the 

amplitudes of the nonthermal and the thermal components, �
in

 and �
t
 are the time 

constants of the sensor response and the relaxation time of thermal component in the 
absorber, respectively. �

n
 is the characteristic relaxation time of athermal phonons, 

depending on the properties of the crystal and of the film, which reads,

where �film and �crystal are the thermalisation time constants in the thermometer and 
in the crystal, respectively.

The model from Eq. 1 was used to fit COSINUS experimental data [11], but was 
found insufficient to describe the pulse shape. In [11], a second thermal component 
was added to obtain reasonable results (see Table 1 of [11]). As anticipated above, 
Eq. 1 solves a system of equations which do not include the carrier. The first modi-
fication to implement is to consider the carrier and find the solution of the complete 
system. This calculation is ongoing.

Studies on vibrational properties of NaI lattice The optimisation of COSINUS 
detectors requires a careful study of the vibrational properties of the NaI lattice, 
to identify the whole system working regime and plan the prototype optimisation 
accordingly. The detector performance is strictly related to the ratio of the time con-
stants �

n
 and �in . This ratio establishes the relation between the sensor response and 

the vibrational properties of the target material, because the ratio depends on �crystal , 
as shown in Eq.  2. The ongoing derivation of the complete model for COSINUS 
detectors will allow the estimation of �crystal as data-fit parameter. On the other hand, 
a simulation of the microscopic behaviour of NaI crystals will support and validate 
the results of the parameter estimation performed by data analysis. To this aim, the 
solid-state theoretical group of the University of L’Aquila has been involved.

4 � Quenching Factor Measurement

According to Birks’ law  [16], the amount of scintillation light emitted due to the 
scattering of a particle off a scintillating material decreases as the mass of the scat-
tered particle increases. The ratio between the amount of light emitted following 
the interaction of a particle in the crystal and the amount of light emitted after a 
�∕� interaction of the same energy is the quenching factor (QF) for that type of par-
ticle. Since the quenching factors may depend on different properties, such as the 
temperature, the crystal doping or the concentration of impurities or defects of the 
lattice [17, 18], a dedicated QF measurement for COSINUS crystals is mandatory. 
Low-temperature QF measurements can be done via calibration with radioactive 
neutron sources as well as via calibration with a mono-energetic neutron beam at 
accelerator facilities. Besides neutron calibration campaigns at LNGS, COSINUS 
already ran two measurements at the Maier-Leibnitz Laboratorium, (facility now 

(1)T
e
(t) − T

b
= �T

e
(t) = A

n

(

e
−t∕�

n − e
−t∕�

in

)

+ A
t

(

e
−t∕�

t − e
−t∕�

n

)

(2)�
n
=

(

1

�film
+

1

�crystal

)−1
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indefinitely closed) one on a NaI(pure) crystal in April 2018, and one on a NaI(Tl) 
crystal, in November 2018, and the data analyses are ongoing.

To quantify the influence of the level of thallium (Tl) dopant on the quenching 
factors, a systematic study of the performance of NaI crystals with different thal-
lium concentrations and at different temperatures is planned. Crystals with different 
amounts of Tl dopant (200 ppm, 500 ppm, 1000 ppm, 1500 ppm) will be operated 
both as cryogenic detectors using an AmBe neutron source and as scintillation detec-
tors at room temperature, at the Triangle University Nuclear Laboratory (TUNL) 
scattering facility, USA, using a neutron beam.

5 � Status of the Experimental Site

The COSINUS experiment will be hosted in LNGS—Laboratori Nazionali del Gran 
Sasso, Italy. The project for the construction is in preparation. The background 
budget evaluation and the shielding concept were investigated using GEANT4 
simulations (results to be published). The project foresees a 7 × 7  m water tank, 
surrounding the dry well hosting the cryostat (Fig. 2). The shielding configuration 
which minimises the background level is described in Table 1. With about 2m of 
water thickness, the number of surviving ambient neutrons expected to reach the 
detector volume is ∼ 10−8 kg−1 yr−1 . With the shielding configuration described in 
Table 1, the number of total (steel+Cu) radiogenic neutrons reaching the detector 
volume with E > 1 keV is found to be 3.08 × 10−3 kg−1yr−1 , while the number of 
cosmogenic neutrons caused by muon interactions in the rock and in the shielding 
material is expected to be 7.44 × 10−1 kg−1yr−1 . Since the cosmogenic contribution 
is found to be two orders of magnitude larger than the radiogenic background level, 
an active muon veto is planned.

The water tank will be used as an active Cherenkov veto. An optical simulation 
was performed to establish the optimal configuration and operation for PMTs. An 
efficient muon veto system can be obtained by using ∼ 18–28 PMTs and defining a 
fivefold PMT coincidence with a trigger on the single photoelectron within a time 
window of a few 100 ns. A refined configuration for both the background shielding 
and the muon veto system will be defined in the near future, according to the results 
of the experimental measurements.

6 � Conclusion

COSINUS will provide a model-independent cross-check of the DAMA/LIBRA 
results. The prototype performance was pushed to a light-energy threshold of 0.6 
keV

ee
 . The phonon-channel threshold of ∼ 8.26 keV is planned to be improved 

by studying in more depth the vibrational properties of the NaI crystal lattice 
and adjusting the layout of the temperature sensors accordingly. The best recent 
prototypes arrive at 5–6 keV; COSINUS’ goal is to reach 1 keV. The crystals 
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Fig. 2   The scheme shows a preliminary 3D section of the COSINUS experimental set-up as located in 
hall B of LNGS. The cryostat hosting the COSINUS detectors is inserted in the dry well of a 7 × 7 -m 
water tank. Panel a: the cryostat lifted up from the dry well to the servicing level. The servicing level 
equipped with a clean room allows for detector mounting. The three-level building close to the water 
tank will host the DAQ and the electronics, the cryostat-related infrastructure and a working area. 
Panel b: sectional view of the cryostat inserted in the dry well of the water tank and, on top of the water 
tank, the service level. Panel c: 3D view of the three-level control building (color figure online)

Table 1   Measures for the shielding configuration, featuring the optimal thicknesses of water, Pb, Cu and 
PE

Tank  
(stainless) (cm)

Water 
radius (cm)

Dry well  
(stainless) (cm)

Pb 
(cm)

Cu 
(cm)

PE 
(cm)

Cryostat 
(Cu) (cm)

Top shield Pb + 
Cu + PE (cm)

1.5 300 0.4 0 8 0 0.8 0 + 30 + 0
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developed at SICCAS already exceed the aimed-for-radio-purity goal. Quench-
ing factor measurements studying the impact of Tl dopant on scintillation light 
emission at both room and low temperatures are planned. The construction of 
the COSINUS experimental facility, designed according to dedicated GEANT4 
simulations for background suppression, is in progress. Together with finalising 
the detector design until 11/2020, COSINUS would then be ready for data taking 
in 11/2021 and first dark matter results with 100 kg days of exposure could be 
expected for 02/2023.
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