12 research outputs found

    Surface electrochemistry : structured electrode, synthesis, and characterization

    Get PDF
    From introduction: The aim of this special issue is to show, through recent updated significant examples, how the electrochemical techniques allow the unique characterization of specific properties of micro- and nanostructured materials that offer varied possibilities of uses and the preparation of specific types of ordered materials that take advantage of electrochemical synthetic methods such as structuring nanosized wires and dots, to cite only two examples

    Surface electrochemistry : structured electrode, synthesis, and characterization

    Get PDF
    From introduction: The aim of this special issue is to show, through recent updated significant examples, how the electrochemical techniques allow the unique characterization of specific properties of micro- and nanostructured materials that offer varied possibilities of uses and the preparation of specific types of ordered materials that take advantage of electrochemical synthetic methods such as structuring nanosized wires and dots, to cite only two examples

    Electrocatalysis of oxidation of 2-mercaptoethanol, L-cysteine and reduced glutathione by adsorbed and electrodeposited cobalt tetra phenoxypyrrole and tetra ethoxythiophene substituted phthalocyanines

    Get PDF
    Catalytic activity of cobalt tetra ethoxythiophene and cobalt tetra phenoxypyrrole phthalocyanine complexes towards oxidation of 2-mercaptoethanol, L-cysteine and reduced glutathione is reported. It was found that the activity of the complexes depends on the substitution of the phthalocyanine ring, pH, film thickness and method of electrode modification. The high electrocatalytic activity obtained with adsorbed complexes in alkaline medium clearly demonstrates the necessity of modifying bare carbon electrodes to endow them with the desired behaviour

    Tuning the redox properties of Co-N4 macrocyclic complexes for the catalytic electrooxidation of glucose

    Get PDF
    Graphite electrodes modified with four different cobalt N4 macrocyclics, namely Co tetrapentapyridinophthalocyanine, (CoTPenPyrPc), Co tetrapyridinoporphyrazine (CoTPyPz), Co octa(hydroxyethylthio)phthalocyanine (CoOEHTPc) and Co tetranitrophthalocyanine (CoTNPc) exhibit catalytic activity for the oxidation of glucose in alkaline media. The purpose of this work is to establish correlations between the catalytic activity of these complexes and their redox potential. The activity of the different modified electrodes was tested by linear voltammetry under hydrodynamic conditions using the rotating disk technique. Tafel plots constructed from mass-transport corrected currents give slopes ranging from 0.080 to 0.160 V/decade for the different catalysts which suggests that a first one-electron step is rate controlling with the symmetry of the energy barrier depending on the nature of the ligand of the Co complex. A plot of log I versus the Co(II)/(I) formal potential gives a volcano curve that also includes catalysts studied previously. This illustrates the concept that the formal potential of the catalyst needs to be tuned to a certain value for achieving maximum activity. A theoretical interpretation of these results is given in terms of Langmuir isotherms for the adsorption of glucose on the Co sites of the surface-confined metal complexes

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity

    ARIA digital anamorphosis : Digital transformation of health and care in airway diseases from research to practice

    Get PDF
    Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed.Peer reviewe

    Electrochemistry of N4 macrocyclic metal complexes

    No full text

    Preparation and Characterization of Electrodes Modified with Pyrrole Surfactant, Multiwalled Carbon Nanotubes and Metallophthalocyanines for the Electrochemical Detection of Thiols

    No full text
    International audienceOur aim was to prepare hybrid electrodes active towards the electrooxidation of thiols by the co-immobilization of native carbon nanotubes (CNTs) and cobalt phthalocyanine (CoPc) from aqueous solutions. This strategy was adopted to avoid the oxidation of CNTs that can induce a modification of their exceptional properties. To do so, a hydrosoluble pyrrole surfactant was used to get homogeneous aqueous dispersions of CNTs and CoPc and to trap both materials on the electrode via the electropolymerization of the pyrrole surfactant. The hybrid electrodes exhibit a good electrocatalytic activity towards the oxidation of L-cysteine and glutathione. Their performances in terms of limit of detection (0.01mM) are compatible with the detection of these thiols in biological samples

    Surface on Surface. Survey of the Monolayer Gold–Graphene Interaction from Au<sub>12</sub> and PAH via Relativistic DFT Calculations

    No full text
    Gold–graphene interaction at the interface is evaluated through different polyaromatic hydrocarbons (PAH), accounted by C<sub>6</sub>H<sub>6</sub>, C<sub>24</sub>H<sub>12</sub>, C<sub>54</sub>H<sub>16</sub>, and C<sub>96</sub>H<sub>18</sub>, focusing into different energetic terms related to the overall interaction. Our results characterize the neutral gold–PAH interaction nature with 45% of dispersion character, 35% of electrostatic, and 20% of covalent character, suggesting that moderate van der Waals character is mostly involved in the interaction, which increases according to the size of the respective PAH. The resulting surface charge distribution in the graphene model is a relevant parameter to take into account, since the ability of the surface charge to be reorganized over the polycyclic structure in both contact and surrounding regions is important in order to evaluate interactions and different interacting conformations. Our results suggest that for a Au<sub>12</sub> contact surface of radius 4.13 Å, the covalent, electrostatic and dispersion character of the interaction are effectively accounted in a graphene surface of about 6.18 Å, as given by circumcoronene, depicting a critical size where the overall interaction character can be accounted
    corecore