9 research outputs found

    A nanocomposite optosensor containing carboxylic functionalized multiwall carbon nanotubes and quantum dots incorporated into a molecularly imprinted polymer for highly selective and sensitive detection of ciprofloxacin

    Get PDF
    A nanocomposite optosensor consisting of carboxylic acid functionalized multiwall carbon nanotubes and CdTe quantum dots embedded inside a molecularly imprinted polymer (COOH@MWCNT-MIP-QDs) was developed for trace ciprofloxacin detection. The COOH@MWCNT-MIP-QDs were synthesized through a facile sol-gel process using ciprofloxacin as a template molecule, 3-aminopropylethoxysilane as a functional monomer and tetraethoxysilane as a cross-linker at a molar ratio of 1:8:20. The synthesized nanocomposite optosensor had high sensitivity, excellent specificity and high binding affinity to ciprofloxacin. Under optimal conditions, the fluorescence intensity of the optosensor decreased in a linear fashion with the concentration of ciprofloxacin and two linear dynamic ranges were obtained, 0.10–1.0 g L-1 and 1.0–100.0 g L-1with a very low limit of detection of 0.066 g L-1 .The imprinting factors of the two linear range were 17.67 and 4.28, respectively. The developed nanocomposite fluorescence probe was applied towards the determination of ciprofloxacin levels in chicken muscle and milk samples with satisfactory recoveries being obtained in the range of 82.6 to 98.4%. The results were also in good agreement with a HPLC method which indicates that the optosensor can be used as a sensitive, selective and rapid method to detect ciprofloxacin in chicken and milk sample. [This version of the abstract is from the authors' manuscript and is not the final published version

    Microfluidic devices: biosensors

    No full text
    corecore