140 research outputs found

    Compressed representation of a partially defined integer function over multiple arguments

    Get PDF
    In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one

    Study of double parton scattering using W+2-jet events in proton-proton collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at √s=8 Tev

    Get PDF
    Peer reviewe

    Measurements of the tt¯ charge asymmetry using the dilepton decay channel in pp collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Searches for new physics using the t(t)over-bar invariant mass distribution in pp collisions at √s=8 TeV

    Get PDF
    This is the pre-print version of the final published paper that is available from the link belowSearches for anomalous top quark-antiquark production are presented, based on pp collisions at √s=8  TeV . The data, corresponding to an integrated luminosity of 19:7 fb^-1, were collected with the CMS detector at the LHC. The observed tt invariant mass spectrum is found to be compatible with the standard model prediction. Limits on the production cross section times branching fraction probe, for the first time, a region of parameter space for certain models of new physics not yet constrained by precision measurements

    Measurement of associated production of vector bosons and top quark-antiquark pairs in pp collisions at √s=7 TeV

    Get PDF
    PubMed ID: 23679709The first measurement of vector-boson production associated with a top quark-antiquark pair in proton-proton collisions at s √ =7  TeV is presented. The results are based on a data set corresponding to an integrated luminosity of 5.0  fb^−1 , recorded by the CMS detector at the LHC in 2011. The measurement is performed in two independent channels through a trilepton analysis of tt ÂŻ Z events and a same-sign dilepton analysis of tt ÂŻ V (V=W or Z ) events. In the trilepton channel a direct measurement of the tt ÂŻ Z cross section σ tt ÂŻ Z =0.28 [+0.14 −0.11]  (stat) [+0.06 −0.03]  (syst)  pb is obtained. In the dilepton channel a measurement of the tt ÂŻ V cross section yields σttÂŻV=0.43 [+0.17 −0.15]  (stat) [+0.09 −0.07]  (syst)  pb . These measurements have a significance, respectively, of 3.3 and 3.0 standard deviations from the background hypotheses and are compatible, within uncertainties, with the corresponding next-to-leading order predictions of 0.137[+0.012 −0.016] and 0.306 [+0.031 −0.053]   pb

    Measurement of the production cross section for Z gamma -> nu(nu)over-bar gamma in pp collisions at √s=7 TeV and limits on ZZ gamma and Z gamma gamma triple gauge boson couplings

    Get PDF
    This article is the pre-print version of the final published paper that is available from the link below.A measurement of the Z → vvÎł cross section in pp collisions at root s = 7TeV is presented, using data corresponding to an integrated luminosity of 5.0 fb-1 collected with the CMS detector. This measurement is based on the observation of events with an imbalance of transverse energy in excess of 130 GeV and a single photon in the absolute pseudorapidity range |n| < 1:4 with transverse energy above 145 GeV. The Z →vvÎł production cross section is measured to be 21.1±4.2 (stat:)±4.3 (syst:)±0.5 (lum:) fb, which agrees with the standard model prediction of 21.9±1.1 fb. The results are combined with the CMS measurement of Z production in the l+l- Îł final state (where l is an electron or a muon) to yield the most stringent limits to date on triple gauge boson couplings: |hZ3|< 2.7 x 10-3, |hZ4| < 1,3 x 10-5 for ZZÎł and |hÎł3| < 2.9 x10-3, |hÎł4| < 1.5 x 10-5 for Zγγ couplings

    Measurement of the differential and double-differential Drell-Yan cross sections in proton-proton collisions at root s=7 TeV

    Get PDF
    Copyright @ 2013 CERN, for the bene t of the CMS collaboration. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.Measurements of the differential and double-differential Drell-Yan cross sections are presented using an integrated luminosity of 4.5 (4.8) fb−1 in the dimuon (dielectron) channel of proton-proton collision data recorded with the CMS detector at the LHC at s√ = 7 TeV. The measured inclusive cross section in the Z-peak region (60–120 GeV) is σ(ℓℓ) = 986.4 ± 0.6 (stat.) ± 5.9 (exp. syst.) ± 21.7 (th. syst.) ± 21.7 (lum.) pb for the combination of the dimuon and dielectron channels. Differential cross sections dσ/dm for the dimuon, dielectron, and combined channels are measured in the mass range 15 to 1500 GeV and corrected to the full phase space. Results are also presented for the measurement of the double-differential cross section d2σ/dm d|y| in the dimuon channel over the mass range 20 to 1500 GeV and absolute dimuon rapidity from 0 to 2.4. These measurements are compared to the predictions of perturbative QCD calculations at next-to-leading and next-to-next-to-leading orders using various sets of parton distribution functions.The Austrian Federal Ministry of Science and Research and the Austrian Science Fund; the Belgian Fonds de la Recherche Scienti que, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Recurrent nancing contract SF0690030s09 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucl eaire et de Physique des Particules / CNRS, and Commissariat a l' Energie Atomique et aux Energies Alternatives / CEA, France; the Bundesministerium f ur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scienti c Research Foundation, and National Innovation O ce, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Republic of Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Funda c~ao para a Ci^encia e a Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretar a de Estado de Investigaci on, Desarrollo e Innovaci on and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scienti c and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the Science and Technology Facilities Council, UK; the US Department of Energy, and the US National Science Foundation

    Inequalities in health, does health care matter? Social inequalities in mortality in Europe, with a special focus on the role of the health care system

    Get PDF
    The international evidence on socioeconomic inequalities in health is compelling: in all European countries, people who live in disadvantaged circumstances have poorer health, more disability and shorter lives than those who are more affluent. Also, the health of migrants is often poorer compared to the health status of the host population, particularly among some ethnic groups and for some conditions. Poorer access to health services and lower quality of services provided to disadvantaged populations may potentially contribute to the explanation of inequalities in health. Knowledge of these shortcomings can be used by policy makers as potential entry points for improvements in population health and for reductions of socioeconomic and ethnic inequalities in health. The research underlying this thesis aims to contribute to the discussion on the role that the health care system plays in socioeconomic and ethnic inequalities in health. Specifically, we aim to measure the magnitude of socioeconomic and ethnic inequalities related to the functioning of the health care system. We do so by estimating the levels of inequalities in avoidable mortality, utilization and quality of health services. The following specific research questions are addressed: 1) What is the magnitude of socioeconomic and ethnic inequalities in mortality in different European countries? 2) What is the magnitude of socioeconomic and ethnic inequalities in mortality from causes that are related to the functioning of health care in Europe? 3) What is the magnitude of socioeconomic and ethnic inequalities in the utilization and quality of specific health care services
    • 

    corecore