761 research outputs found

    Exact Master Equation and Non-Markovian Decoherence for Quantum Dot Quantum Computing

    Full text link
    In this article, we report the recent progress on decoherence dynamics of electrons in quantum dot quantum computing systems using the exact master equation we derived recently based on the Feynman-Vernon influence functional approach. The exact master equation is valid for general nanostructure systems coupled to multi-reservoirs with arbitrary spectral densities, temperatures and biases. We take the double quantum dot charge qubit system as a specific example, and discuss in details the decoherence dynamics of the charge qubit under coherence controls. The decoherence dynamics risen from the entanglement between the system and the environment is mainly non-Markovian. We further discuss the decoherence of the double-dot charge qubit induced by quantum point contact (QPC) measurement where the master equation is re-derived using the Keldysh non-equilibrium Green function technique due to the non-linear coupling between the charge qubit and the QPC. The non-Markovian decoherence dynamics in the measurement processes is extensively discussed as well.Comment: 15 pages, Invited article for the special issue "Quantum Decoherence and Entanglement" in Quantum Inf. Proces

    π+π+\pi^+\pi^+ and π+π−\pi^+\pi^- colliding in noncommutative space

    Full text link
    By studying the scattering process of scalar particle pion on the noncommutative scalar quantum electrodynamics, the non-commutative amendment of differential scattering cross-section is found, which is dependent of polar-angle and the results are significantly different from that in the commutative scalar quantum electrodynamics, particularly when cosâĄÎžâˆŒÂ±1\cos\theta\sim \pm 1. The non-commutativity of space is expected to be explored at around ΛNC∌\Lambda_{NC}\simTeV.Comment: Latex, 12 page

    Improving the professional knowledge base for education: Using knowledge management (KM) and Web 2.0 tools

    Get PDF
    Improving education systems is an elusive goal. Despite considerable investment, international studies such as the OECD Teaching and Learning International Survey (TALIS) project and the McKinsey Report How the world’s best performing schools come out on top indicate that improving teacher quality is more important than increased financial investment. Both reports challenge governments, academics and practitioners to adopt new ways of sharing and building knowledge. This paper makes the case for national education systems to adopt tried and tested knowledge management and web 2.0 tools used by other sectors and highlights the neglected potential of teacher educators as agents for improvement

    The fully differential single-top-quark cross section in next-to-leading order QCD

    Get PDF
    We present a new next-to-leading order calculation for fully differential single-top-quark final states. The calculation is performed using phase space slicing and dipole subtraction methods. The results of the methods are found to be in agreement. The dipole subtraction method calculation retains the full spin dependence of the final state particles. We show a few numerical results to illustrate the utility and consistency of the resulting computer implementations.Comment: 37 pages, latex, 2 ps figure

    Observation of Cabibbo-suppressed and W-exchange Lambda_c^+ baryon decays

    Get PDF
    We present measurements of the Cabibbo-suppressed decays Lambda_c^+ --> Lambda0 K+ and Lambda_c^+ --> Sigma0 K+ (both first observations), Lambda_c^+ --> Sigma+ K+ pi- (seen with large statistics for the first time), Lambda_c^+ --> p K+ K- and Lambda_c^+ --> p phi (measured with improved accuracy). Improved branching ratio measurements for the decays Lambda_c^+ --> Sigma+ K+ K- and Lambda_c^+ --> Sigma+ phi, which are attributed to W-exchange diagrams, are shown. We also present the first evidence for Lambda_c^+ --> Xi(1690)^0 K+ and set an upper limit on the non-resonant decay Lambda_c^+ --> Sigma+ K+ K-. This analysis was performed using 32.6 fb^{-1} of data collected by the Belle detector at the asymmetric e+ e- collider KEKB.Comment: Submitted to Phys. Lett. B. v2: A small correction to the Authorlist was made. An earlier version of this analysis was released as BELLE-CONF-0130, hep-ex/010800

    Determination of |Vcb| using the semileptonic decay \bar{B}^0 --> D^{*+}e^-\bar{\nu}

    Full text link
    We present a measurement of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element |Vcb| using a 10.2 fb^{-1} data sample recorded at the \Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric e^+e^- storage ring. By extrapolating the differential decay width of the \bar{B}^0 --> D^{*+}e^-\bar{\nu} decay to the kinematic limit at which the D^{*+} is at rest with respect to the \bar{B}^0, we extract the product of |Vcb| with the normalization of the decay form factor F(1), |Vcb |F(1)= (3.54+/-0.19+/-0.18)x10^{-2}, where the first error is statistical and the second is systematic. A value of |Vcb| = (3.88+/-0.21+/-0.20+/-0.19)x10^{-2} is obtained using a theoretical calculation of F(1), where the third error is due to the theoretical uncertainty in the value of F(1). The branching fraction B(\bar{B}^0 --> D^{*+}e^-\bar{\nu}) is measured to be (4.59+/-0.23+/-0.40)x10^{-2}.Comment: 20 pages, 6 figures, elsart.cls, submitted to PL

    Measurement of the inclusive semileptonic branching fraction of B mesons and |Vcb|

    Full text link
    We present a measurement of the electron spectrum from inclusive semileptonic {\it B} decay, using 5.1 fb−1^{-1} of ΄(4S)\Upsilon(4S) data collected with the Belle detector. A high-momentum lepton tag was used to separate the semileptonic {\it B} decay electrons from secondary decay electrons. We obtained the branching fraction, B(B→Xe+Îœ)=(10.90±0.12±0.49){\cal B}(B\to X e^+ \nu) = (10.90 \pm 0.12 \pm 0.49)%, with minimal model dependence. From this measurement, we derive a value for the Cabibbo-Kobayashi-Maskawa matrix element ∣Vcb∣=0.0408±0.0010(exp)±0.0025(th)|V_{cb}| = 0.0408 \pm 0.0010 {\rm (exp)} \pm 0.0025{\rm (th)}.Comment: 16 pages, 3 figures, 3 table

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore