92 research outputs found

    Evolution of hepatic steatosis in patients with advanced hepatitis C: Results from the hepatitis C antiviral long-term treatment against cirrhosis (HALT-C) trial

    Full text link
    Hepatic steatosis is a common histologic feature in patients with chronic hepatitis C (CHC) but there are no large longitudinal studies describing the progression of steatosis in CHC. We examined changes in steatosis on serial biopsies among CHC patients participating in the Hepatitis C Antiviral Long-term Treatment against Cirrhosis (HALT-C) Trial. All 1050 patients in the trial had advanced fibrosis at baseline biopsy and were documented not to have had a sustained virological response to peginterferon and ribavirin. Most (94%) patients had genotype 1 infection. At least one protocol follow-up biopsy was read on 892 patients, and 699 had the last biopsy performed 3.5 years after randomization. At enrollment, 39% had cirrhosis and 61% had bridging fibrosis; 18%, 41%, 31%, and 10% had steatosis scores of 0, 1, 2, and 3 or 4, respectively. The mean steatosis score decreased in the follow-up biopsies in both the interferon-treated patients and controls with no effect of treatment assignment ( P = 0.66). A decrease in steatosis score by ≥1 point was observed in 30% of patients and was associated with both progression to cirrhosis and continued presence of cirrhosis ( P = 0.02). Compared to patients without a decrease in steatosis, those with a decrease in steatosis had worse metabolic parameters at enrollment, and were more likely to have a decrease in alcohol intake, improvement in metabolic parameters, and worsening liver disease (cirrhosis, esophageal varices, and deterioration in liver function). Conclusion: Serial biopsies demonstrated that in patients with CHC, steatosis recedes during progression from advanced fibrosis to cirrhosis. Decreased alcohol intake and improved metabolic parameters are associated with a decline in steatosis and may modulate hepatitis C progression. (H EPATOLOGY 2009.)Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63058/1/22865_ftp.pd

    Achievements of Hinode in the first eleven years

    Get PDF
    Hinode is Japan’s third solar mission following Hinotori (1981–1982) and Yohkoh (1991–2001): it was launched on 2006 September 22 and is in operation currently. Hinode carries three instruments: the Solar Optical Telescope, the X-Ray Telescope, and the EUV Imaging Spectrometer. These instruments were built under international collaboration with the National Aeronautics and Space Administration and the UK Science and Technology Facilities Council, and its operation has been contributed to by the European Space Agency and the Norwegian Space Center. After describing the satellite operations and giving a performance evaluation of the three instruments, reviews are presented on major scientific discoveries by Hinode in the first eleven years (one solar cycle long) of its operation. This review article concludes with future prospects for solar physics research based on the achievements of Hinode

    Achievements of Hinode in the first eleven years

    Get PDF
    Hinode is Japan’s third solar mission following Hinotori (1981–1982) and Yohkoh (1991–2001): it was launched on 2006 September 22 and is in operation currently. Hinode carries three instruments: the Solar Optical Telescope, the X-Ray Telescope, and the EUV Imaging Spectrometer. These instruments were built under international collaboration with the National Aeronautics and Space Administration and the UK Science and Technology Facilities Council, and its operation has been contributed to by the European Space Agency and the Norwegian Space Center. After describing the satellite operations and giving a performance evaluation of the three instruments, reviews are presented on major scientific discoveries by Hinode in the first eleven years (one solar cycle long) of its operation. This review article concludes with future prospects for solar physics research based on the achievements of Hinode

    PDBe: improved findability of macromolecularstructure data in the PDB

    Get PDF
    © 2019 The Authors. Published by OUP. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1093/nar/gkz990The Protein Data Bank in Europe (PDBe), a founding member of the Worldwide Protein Data Bank (wwPDB), actively participates in the deposition, curation, validation, archiving and dissemination of macromolecular structure data. PDBe supports diverse research communities in their use of macromolecular structures by enriching the PDB data and by providing advanced tools and services for effective data access, visualization and analysis. This paper details the enrichment of data at PDBe, including mapping of RNA structures to Rfam, and identification of molecules that act as cofactors. PDBe has developed an advanced search facility with ∼100 data categories and sequence searches. New features have been included in the LiteMol viewer at PDBe, with updated visualization of carbohydrates and nucleic acids. Small molecules are now mapped more extensively to external databases and their visual representation has been enhanced. These advances help users to more easily find and interpret macromolecular structure data in order to solve scientific problems.The Protein Data Bank in Europe is supported by European Molecular Biology Laboratory-European Bioinformatics Institute; Wellcome Trust [104948]; Biotechnology and Biological Sciences Research Council [BB/N019172/1, BB/G022577/1, BB/J007471/1, BB/K016970/1, BB/K020013/1, BB/M013146/1, BB/M011674/1, BB/M020347/1, BB/M020428/1, BB/P024351/1]; European Union [284209]; ELIXIR and Open Targets. Funding for open access charge: EMB

    The neurobiology of interoception in health and disease

    Get PDF
    Interoception is the sensing of internal bodily sensations. Interoception is an umbrella term that encompasses (1) the afferent (body‐to‐brain) signaling through distinct neural and humoral (including immune and endocrine) channels; (2) the neural encoding, representation, and integration of this information concerning internal bodily state; (3) the influence of such information on other perceptions, cognitions, and behaviors; (4) and the psychological expression of these representations as consciously accessible physical sensations and feelings. Interoceptive mechanisms ensure physiological health through the cerebral coordination of homeostatic reflexes and allostatic responses that include motivational behaviors and associated affective and emotional feelings. Furthermore, the conscious, unitary sense of self in time and space may be grounded in the primacy and lifelong continuity of interoception. Body‐to‐brain interactions influence physical and mental well‐being. Consequently, we show that systematic investigation of how individual differences, and within‐individual changes, in interoceptive processing can contribute to the mechanistic understanding of physical and psychological disorders. We present a neurobiological overview of interoception and describe how interoceptive impairments at different levels relate to specific physical and mental health conditions, including sickness behaviors and fatigue, depression, eating disorders, autism, and anxiety. We frame these findings in an interoceptive predictive processing framework and highlight potential new avenues for treatments

    Spectacular horizons: the birth of science fiction film, television, and radio, 1900-1959

    Full text link
    &nbsp;<br /

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Swept Under the Rug? A Historiography of Gender and Black Colleges

    Full text link
    corecore