522 research outputs found

    A constrained scheme for Einstein equations based on Dirac gauge and spherical coordinates

    Full text link
    We propose a new formulation for 3+1 numerical relativity, based on a constrained scheme and a generalization of Dirac gauge to spherical coordinates. This is made possible thanks to the introduction of a flat 3-metric on the spatial hypersurfaces t=const, which corresponds to the asymptotic structure of the physical 3-metric induced by the spacetime metric. Thanks to the joint use of Dirac gauge, maximal slicing and spherical components of tensor fields, the ten Einstein equations are reduced to a system of five quasi-linear elliptic equations (including the Hamiltonian and momentum constraints) coupled to two quasi-linear scalar wave equations. The remaining three degrees of freedom are fixed by the Dirac gauge. Indeed this gauge allows a direct computation of the spherical components of the conformal metric from the two scalar potentials which obey the wave equations. We present some numerical evolution of 3-D gravitational wave spacetimes which demonstrates the stability of the proposed scheme.Comment: Difference w.r.t. v1: Major revision: improved presentation of the tensor wave equation and addition of the first results from a numerical implementation; w.r.t. v2: Minor changes: improved conclusion and figures; w.r.t. v3: Minors changes, 1 figure added; 25 pages, 13 figures, REVTeX, accepted for publication in Phys. Rev.

    Quasiequilibrium sequences of synchronized and irrotational binary neutron stars in general relativity. I. Method and tests

    Full text link
    We present a numerical method to compute quasiequilibrium configurations of close binary neutron stars in the pre-coalescing stage. A hydrodynamical treatment is performed under the assumption that the flow is either rigidly rotating or irrotational. The latter state is technically more complicated to treat than the former one (synchronized binary), but is expected to represent fairly well the late evolutionary stages of a binary neutron star system. As regards the gravitational field, an approximation of general relativity is used, which amounts to solving five of the ten Einstein equations (conformally flat spatial metric). The obtained system of partial differential equations is solved by means of a multi-domain spectral method. Two spherical coordinate systems are introduced, one centered on each star; this results in a precise description of the stellar interiors. Thanks to the multi-domain approach, this high precision is extended to the strong field regions. The computational domain covers the whole space so that exact boundary conditions are set to infinity. Extensive tests of the numerical code are performed, including comparisons with recent analytical solutions. Finally a constant baryon number sequence (evolutionary sequence) is presented in details for a polytropic equation of state with gamma=2.Comment: Minor corrections, references updated, 42 pages, 25 PostScript figures, accepted for publication in Phys. Rev.

    The Vaginal Microbiome: Disease, Genetics and the Environment

    Get PDF
    The vagina is an interactive interface between the host and the environment. Its surface is covered by a protective epithelium colonized by bacteria and other microorganisms. The ectocervix is nonsterile, whereas the endocervix and the upper genital tract are assumed to be sterile in healthy women. Therefore, the cervix serves a pivotal role as a gatekeeper to protect the upper genital tract from microbial invasion and subsequent reproductive pathology. Microorganisms that cross this barrier can cause preterm labor, pelvic inflammatory disease, and other gynecologic and reproductive disorders. Homeostasis of the microbiome in the vagina and ectocervix plays a paramount role in reproductive health. Depending on its composition, the microbiome may protect the vagina from infectious or non-infectious diseases, or it may enhance its susceptibility to them. Because of the nature of this organ, and the fact that it is continuously colonized by bacteria from birth to death, it is virtually certain that this rich environment evolved in concert with its microbial flora. Specific interactions dictated by the genetics of both the host and microbes are likely responsible for maintaining both the environment and the microbiome. However, the genetic basis of these interactions in both the host and the bacterial colonizers is currently unknown. _Lactobacillus_ species are associated with vaginal health, but the role of these species in the maintenance of health is not yet well defined. Similarly, other species, including those representing minor components of the overall flora, undoubtedly influence the ability of potential pathogens to thrive and cause disease. Gross alterations in the vaginal microbiome are frequently observed in women with bacterial vaginosis, but the exact etiology of this disorder is still unknown. There are also implications for vaginal flora in non-infectious conditions such as pregnancy, pre-term labor and birth, and possibly fertility and other aspects of women’s health. Conversely, the role of environmental factors in the maintenance of a healthy vaginal microbiome is largely unknown. To explore these issues, we have proposed to address the following questions:

*1.	Do the genes of the host contribute to the composition of the vaginal microbiome?* We hypothesize that genes of both host and bacteria have important impacts on the vaginal microbiome. We are addressing this question by examining the vaginal microbiomes of mono- and dizygotic twin pairs selected from the over 170,000 twin pairs in the Mid-Atlantic Twin Registry (MATR). Subsequent studies, beyond the scope of the current project, may investigate which host genes impact the microbial flora and how they do so.
*2.	What changes in the microbiome are associated with common non-infectious pathological states of the host?* We hypothesize that altered physiological (e.g., pregnancy) and pathologic (e.g., immune suppression) conditions, or environmental exposures (e.g., antibiotics) predictably alter the vaginal microbiome. Conversely, certain vaginal microbiome characteristics are thought to contribute to a woman’s risk for outcomes such as preterm delivery. We are addressing this question by recruiting study participants from the ~40,000 annual clinical visits to women’s clinics of the VCU Health System.
*3.	What changes in the vaginal microbiome are associated with relevant infectious diseases and conditions?* We hypothesize that susceptibility to infectious disease (e.g. HPV, _Chlamydia_ infection, vaginitis, vaginosis, etc.) is impacted by the vaginal microbiome. In turn, these infectious conditions clearly can affect the ability of other bacteria to colonize and cause pathology. Again, we are exploring these issues by recruiting participants from visitors to women’s clinics in the VCU Health System.

Three kinds of sequence data are generated in this project: i) rDNA sequences from vaginal microbes; ii) whole metagenome shotgun sequences from vaginal samples; and iii) whole genome shotgun sequences of bacterial clones selected from vaginal samples. The study includes samples from three vaginal sites: mid-vaginal, cervical, and introital. The data sets also include buccal and perianal samples from all twin participants. Samples from these additional sites are used to test the hypothesis of a per continuum spread of bacteria in relation to vaginal health. An extended set of clinical metadata associated with these sequences are deposited with dbGAP. We have currently collected over 4,400 samples from ~100 twins and over 450 clinical participants. We have analyzed and deposited data for 480 rDNA samples, eight whole metagenome shotgun samples, and over 50 complete bacterial genomes. These data are available to accredited investigators according to NIH and Human Microbiome Project (HMP) guidelines. The bacterial clones are deposited in the Biodefense and Emerging Infections Research Resources Repository ("http://www.beiresources.org/":http://www.beiresources.org/). 

In addition to the extensive sequence data obtained in this study, we are collecting metadata associated with each of the study participants. Thus, participants are asked to complete an extensive health history questionnaire at the time samples are collected. Selected clinical data associated with the visit are also obtained, and relevant information is collected from the medical records when available. This data is maintained securely in a HIPAA-compliant data system as required by VCU’s Institutional Review Board (IRB). The preponderance of these data (i.e., that judged appropriate by NIH staff and VCU’s IRB are deposited at dbGAP ("http://www.ncbi.nlm.nih.gov/gap":http://www.ncbi.nlm.nih.gov/gap). Selected fields of this data have been identified by NIH staff as ‘too sensitive’ and are not available in dbGAP. Individuals requiring access to these data fields are asked to contact the PI of this project or NIH Program Staff. 
&#xa

    Weak Lensing with SDSS Commissioning Data: The Galaxy-Mass Correlation Function To 1/h Mpc

    Full text link
    (abridged) We present measurements of galaxy-galaxy lensing from early commissioning imaging data from the Sloan Digital Sky Survey (SDSS). We measure a mean tangential shear around a stacked sample of foreground galaxies in three bandpasses out to angular radii of 600'', detecting the shear signal at very high statistical significance. The shear profile is well described by a power-law. A variety of rigorous tests demonstrate the reality of the gravitational lensing signal and confirm the uncertainty estimates. We interpret our results by modeling the mass distributions of the foreground galaxies as approximately isothermal spheres characterized by a velocity dispersion and a truncation radius. The velocity dispersion is constrained to be 150-190 km/s at 95% confidence (145-195 km/s including systematic uncertainties), consistent with previous determinations but with smaller error bars. Our detection of shear at large angular radii sets a 95% confidence lower limit s>140s>140^{\prime\prime}, corresponding to a physical radius of 260h1260h^{-1} kpc, implying that galaxy halos extend to very large radii. However, it is likely that this is being biased high by diffuse matter in the halos of groups and clusters. We also present a preliminary determination of the galaxy-mass correlation function finding a correlation length similar to the galaxy autocorrelation function and consistency with a low matter density universe with modest bias. The full SDSS will cover an area 44 times larger and provide spectroscopic redshifts for the foreground galaxies, making it possible to greatly improve the precision of these constraints, measure additional parameters such as halo shape, and measure the properties of dark matter halos separately for many different classes of galaxies.Comment: 28 pages, 11 figures, submitted to A

    Circular orbits of corotating binary black holes: comparison between analytical and numerical results

    Get PDF
    We compare recent numerical results, obtained within a ``helical Killing vector'' (HKV) approach, on circular orbits of corotating binary black holes to the analytical predictions made by the effective one body (EOB) method (which has been recently extended to the case of spinning bodies). On the scale of the differences between the results obtained by different numerical methods, we find good agreement between numerical data and analytical predictions for several invariant functions describing the dynamical properties of circular orbits. This agreement is robust against the post-Newtonian accuracy used for the analytical estimates, as well as under choices of resummation method for the EOB ``effective potential'', and gets better as one uses a higher post-Newtonian accuracy. These findings open the way to a significant ``merging'' of analytical and numerical methods, i.e. to matching an EOB-based analytical description of the (early and late) inspiral, up to the beginning of the plunge, to a numerical description of the plunge and merger. We illustrate also the ``flexibility'' of the EOB approach, i.e. the possibility of determining some ``best fit'' values for the analytical parameters by comparison with numerical data.Comment: Minor revisions, accepted for publication in Phys. Rev. D, 19 pages, 6 figure

    Weak Lensing Measurements of 42 SDSS/RASS Galaxy Clusters

    Get PDF
    We present a lensing study of 42 galaxy clusters imaged in Sloan Digital Sky Survey (SDSS) commissioning data. Cluster candidates are selected optically from SDSS imaging data and confirmed for this study by matching to X-ray sources found independently in the ROSAT all sky survey (RASS). Five color SDSS photometry is used to make accurate photometric redshift estimates that are used to rescale and combine the lensing measurements. The mean shear from these clusters is detected to 2 h-1 Mpc at the 7-sigma level, corresponding to a mass within that radius of 4.2 +/- 0.6 x 10^14 h-1 M_sun. The shear profile is well fit by a power law with index -0.9 +/- 0.3, consistent with that of an isothermal density profile. This paper demonstrates our ability to measure ensemble cluster masses from SDSS imaging data.Comment: 14 pages, 7 figures, Accepted for publication in Ap

    Loss of spindle assembly checkpoint–mediated inhibition of Cdc20 promotes tumorigenesis in mice

    Get PDF
    Genomic instability is a hallmark of human cancers. Spindle assembly checkpoint (SAC) is a critical cellular mechanism that prevents chromosome missegregation and therefore aneuploidy by blocking premature separation of sister chromatids. Thus, SAC, much like the DNA damage checkpoint, is essential for genome stability. In this study, we report the generation and analysis of mice carrying a Cdc20 allele in which three residues critical for the interaction with Mad2 were mutated to alanine. The mutant Cdc20 protein (AAA-Cdc20) is no longer inhibited by Mad2 in response to SAC activation, leading to the dysfunction of SAC and aneuploidy. The dysfunction could not be rescued by the additional expression of another Cdc20 inhibitor, BubR1. Furthermore, we found that Cdc20AAA/AAA mice died at late gestation, but Cdc20+/AAA mice were viable. Importantly, Cdc20+/AAA mice developed spontaneous tumors at highly accelerated rates, indicating that the SAC-mediated inhibition of Cdc20 is an important tumor-suppressing mechanism

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Penilaian Kinerja Keuangan Koperasi di Kabupaten Pelalawan

    Full text link
    This paper describe development and financial performance of cooperative in District Pelalawan among 2007 - 2008. Studies on primary and secondary cooperative in 12 sub-districts. Method in this stady use performance measuring of productivity, efficiency, growth, liquidity, and solvability of cooperative. Productivity of cooperative in Pelalawan was highly but efficiency still low. Profit and income were highly, even liquidity of cooperative very high, and solvability was good
    corecore