104 research outputs found

    Outdoor Comfort in Public Spaces, a Critical Review

    Get PDF

    Quantivine: A Visualization Approach for Large-scale Quantum Circuit Representation and Analysis

    Full text link
    Quantum computing is a rapidly evolving field that enables exponential speed-up over classical algorithms. At the heart of this revolutionary technology are quantum circuits, which serve as vital tools for implementing, analyzing, and optimizing quantum algorithms. Recent advancements in quantum computing and the increasing capability of quantum devices have led to the development of more complex quantum circuits. However, traditional quantum circuit diagrams suffer from scalability and readability issues, which limit the efficiency of analysis and optimization processes. In this research, we propose a novel visualization approach for large-scale quantum circuits by adopting semantic analysis to facilitate the comprehension of quantum circuits. We first exploit meta-data and semantic information extracted from the underlying code of quantum circuits to create component segmentations and pattern abstractions, allowing for easier wrangling of massive circuit diagrams. We then develop Quantivine, an interactive system for exploring and understanding quantum circuits. A series of novel circuit visualizations are designed to uncover contextual details such as qubit provenance, parallelism, and entanglement. The effectiveness of Quantivine is demonstrated through two usage scenarios of quantum circuits with up to 100 qubits and a formal user evaluation with quantum experts. A free copy of this paper and all supplemental materials are available at https://osf.io/2m9yh/?view_only=0aa1618c97244f5093cd7ce15f1431f9.Comment: Accepted by IEEE VIS 202

    GeoEval : benchmark for evaluating LLMs and Multi-Modal Models on geometry problem-solving

    Get PDF
    Recent advancements in Large Language Models (LLMs) and Multi-Modal Models (MMs) have demonstrated their remarkable capabilities in problem-solving. Yet, their proficiency in tackling geometry math problems, which necessitates an integrated understanding of both textual and visual information, has not been thoroughly evaluated. To address this gap, we introduce the GeoEval benchmark, a comprehensive collection that includes a main subset of 2000 problems, a 750 problem subset focusing on backward reasoning, an augmented subset of 2000 problems, and a hard subset of 300 problems. This benchmark facilitates a deeper investigation into the performance of LLMs and MMs on solving geometry math problems. Our evaluation of ten LLMs and MMs across these varied subsets reveals that the WizardMath model excels, achieving a 55.67\% accuracy rate on the main subset but only a 6.00\% accuracy on the challenging subset. This highlights the critical need for testing models against datasets on which they have not been pre-trained. Additionally, our findings indicate that GPT-series models perform more effectively on problems they have rephrased, suggesting a promising method for enhancing model capabilities

    Taxonomy and phylogeny of the Leptographium procerum complex, including Leptographium sinense sp. nov. and Leptographium longiconidiophorum sp. nov

    Get PDF
    Leptographium procerum (Ophiostomatales, Ascomycota) is a well-known fungal associate of pine root-infesting bark beetles and weevils, occurring in several countries of the world. The fungus is not a primary pathogen but has been associated with white pine root decline in the USA and with serious damage caused by the introduced red turpentine beetle (RTB) Dendroctonus valens in China. Several species closely related to L. procerum have been described during the past decade. The aim of this study was to reevaluate species boundaries in the L. procerum complex using multigene phylogenetic analyses and morphological comparisons. Phylogenetic analyses of seven gene regions (ITS2-LSU, actin, b-tubulin, calmodulin, translation elongation factor 1-a, and the mating type genes MAT1-1-3 and MAT1-2-1) distinguished between nine species in the complex. These included L. procerum, L. bhutanense, L. gracile, L. profanum, L. pini-densiflorae, L. sibiricum, L. sinoprocerum, as well as two new species described here as Leptographium sinense sp. nov. from Hylobitelus xiaoi on Pinus elliottii in China, and Leptographium longiconidiophorum sp. nov. from Pinus densiflora in Japan. Leptographium latens is reduced to synonymy with L. gracile, and an epitype is designated for L. procerum, because a living culture associated with the holotype of L. procerum did not exist. Amplification patterns of the mating type genes suggest that all known species in the L. procerum complex are heterothallic, although sexual states have not been observed for any of the species. The results also suggest that Eastern Asia is most probably the centre of species diversity for the L. procerum complex.This study was initiated through the bilateral agreement between the Governments of South Africa and China, and we are grateful for the funding via projects 2012DFG31830 (International Science & Technology Cooperation Program of China), 2010KJCX015-03 (Forestry Science and Technology Innovation Project of Guangdong Province of China). We acknowledge members of Tree Protection and Cooperation Programme (TPCP), the National Research Foundation (NRF), the Department of Science and Technology (DST)/NRF, Center of Excellence in Tree Health Biotechnology (CTHB) and the University of Pretoria, Pretoria, South Africa.http://link.springer.com/journal/104822016-02-28hb201

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF
    corecore