10 research outputs found

    Genetic polymorphisms of HLA-DP and isolated anti-HBc are important subsets of occult hepatitis B infection in Indonesian blood donors: a case-control study

    Get PDF
    Abstract Background Occult hepatitis B infection (OBI) is defined as the presence of hepatitis B virus (HBV) DNA in the serum and/or liver in HBsAg-negative individuals. OBI is associated with the risk of viral transmission, especially in developing countries, and with progressive liver disease and reactivation in immunosuppressive patients. The objective of this study was to evaluate the relation of OBI to HLA-DP single nucleotide polymorphisms (SNPs) encoding antigen-binding sites for the immune response to HBV infection. As HLA-DP variants affect the mRNA expression of HLA-DPA1 and HLA-DPB1 in the liver, we hypothesised that high levels of HLA-DPA1 and HLA-DPB1 expression favour OBI development. Methods The study enrolled 456 Indonesian healthy blood donors (HBsAg negative). OBI was defined as the presence of HBV-DNA in at least two of four open reading frames (ORFs) of the HBV genome detected by nested PCR. SNPs in HLA-DPA1 (rs3077) and HLA-DPB1 (rs3135021, rs9277535, and rs2281388) were genotyped using real-time Taqman® genotyping assays. Results Of 122 samples positive for anti-HBs and/or anti-HBc, 17 were determined as OBI. The minor allele in rs3077 was significantly correlated with OBI [odds ratio (OR) = 3.87, 95% confidence interval (CI) = 1.58–9.49, p = 0.0015]. The prevalence of the minor allele (T) was significantly higher in subjects with OBI than in those without (59% and 33%, respectively). The combination of haplotype markers (TGA for rs3077–rs3135021–rs9277535) was associated with increased risk of OBI (OR = 4.90, 95%CI = 1.12–21.52 p = 0.038). The prevalence of OBI was highest in the isolated anti-HBc group among the three seropositive categories: anti-HBs <500 mIU/ml, anti-HBs ≥500 mIU/ml, and isolated anti-HBc (29.41%, p = 0.014). Conclusion Genetic variants of HLA-DP and the presence of anti-HBc are important predictors of OBI in Indonesian blood donors. Trial registration Ref: KE/FK/194/EC; registered 01 March 2013. Continuing approval Ref: KE/FK/536/EC; registered 12 May 2014

    Epidemiologic, clinical, and serum markers may improve discrimination between bacterial and viral etiologies of childhood pneumonia

    Get PDF
    BackgroundDiscrimination of bacterial and viral etiologies of childhood community-acquired pneumonia (CAP) is often challenging. Unnecessary antibiotic administration exposes patients to undue risks and may engender antimicrobial resistance. This study aimed to develop a prediction model using epidemiological, clinical and laboratory data to differentiate between bacterial and viral CAP.MethodsData from 155 children with confirmed bacterial or mixed bacterial and viral infection (N = 124) and viral infection (N = 31) were derived from a comprehensive assessment of causative pathogens [Partnerships for Enhanced Engagement in Research-Pneumonia in Pediatrics (PEER-PePPeS)] conducted in Indonesia. Epidemiologic, clinical and biomarker profiles (hematology and inflammatory markers) were compared between groups. The area under the receiver operating characteristic curve (AUROC) for varying biomarker levels was used to characterize performance and determine cut-off values for discrimination of bacterial and mixed CAP versus viral CAP. Diagnostic predictors of bacterial and mixed CAP were assessed by multivariate logistic regression.ResultsDiarrhea was more frequently reported in bacterial and mixed CAP, while viral infections more frequently occurred during Indonesia’s rainy season. White blood cell counts (WBC), absolute neutrophil counts (ANC), neutrophil-lymphocyte ratio (NLR), C-reactive protein (CRP), and procalcitonin (PCT) were significantly higher in bacterial and mixed cases. After adjusting for covariates, the following were the most important predictors of bacterial or mixed CAP: rainy season (aOR 0.26; 95% CI 0.08–0.90; p = 0.033), CRP ≥5.70 mg/L (aOR 4.71; 95% CI 1.18–18.74; p = 0.028), and presence of fever (aOR 5.26; 95% CI 1.07–25.91; p = 0.041). The model assessed had a low R-squared (Nagelkerke R2 = 0.490) but good calibration (p = 0.610 for Hosmer Lemeshow test). The combination of CRP and fever had moderate predictive value with sensitivity and specificity of 62.28 and 65.52%, respectively.ConclusionCombining clinical and laboratory profiles is potentially valuable for discriminating bacterial and mixed from viral pediatric CAP and may guide antibiotic use. Further studies with a larger sample size should be performed to validate this model

    Table_7.doc

    No full text
    corecore