1,087 research outputs found

    CSR committee and firm value during the COVID-19 pandemic

    Get PDF
    This paper investigates whether the presence of CSR committees has a mitigating effect on firm value (measured by Tobin's Q) during the COVID-19 pandemic. Analyzing UK listed firm data, we find that although the pandemic results in lower firm value, the presence of CSR committees helps to mitigate the negative impact of COVID-19 on firm value. The results suggest that the formation of CSR committees is not a symbolic impression management tool but an effective sustainability governance mechanism during the crisis. Our results should be helpful for regulators and companies in making decisions related to CSR committees

    Development and validation of an in vitro–in vivo correlation (IVIVC) model for propranolol hydrochloride extended-release matrix formulations

    Get PDF
    AbstractThe objective of this study was to develop an in vitro–in vivo correlation (IVIVC) model for hydrophilic matrix extended-release (ER) propranolol dosage formulations. The in vitro release characteristics of the drug were determined using USP apparatus I at 100 rpm, in a medium of varying pH (from pH 1.2 to pH 6.8). In vivo plasma concentrations and pharmacokinetic parameters in male beagle dogs were obtained after administering oral, ER formulations and immediate-release (IR) commercial products. The similarity factor f2 was used to compare the dissolution data. The IVIVC model was developed using pooled fraction dissolved and fraction absorbed of propranolol ER formulations, ER-F and ER-S, with different release rates. An additional formulation ER-V, with a different release rate of propranolol, was prepared for evaluating the external predictability. The results showed that the percentage prediction error (%PE) values of Cmax and AUC0–∞ were 0.86% and 5.95%, respectively, for the external validation study. The observed low prediction errors for Cmax and AUC0–∞ demonstrated that the propranolol IVIVC model was valid

    Reciprocal regulation of MicroRNA-99a and insulin-like growth factor I receptor signaling in oral squamous cell carcinoma cells

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs), small noncoding RNA molecules can function as oncogenes or tumor suppressors in tumorigenesis. Oral squamous cell carcinoma (OSCC) is one of the most prevalent cancers worldwide with a 5-year survival rate of approximately 50%. METHODS: The expression of microRNA-99a (miR-99a) in OSCC tissues and cell lines was investigated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. The functions of miR-99a in migration/invasion and lung colonization were determined by transwell and tail vein injection assays, respectively. Specific targets of miR-99a were determined by software prediction, correlation with target protein expression, and luciferase reporter assay. The signaling pathways involved in regulation of miR-99a were investigated using the kinase inhibitors. RESULTS: We observed reduced levels of miR-99a, identified as one of the most downregulated miRNA in OSCC and all tested OSCC cell lines compared to normal oral keratinocytes. Ectopic miR-99a expression in OSCC cells markedly reduced migration and invasion in vitro as well as lung colonization in vivo. When evaluating the specific targets of miR-99a, we found that ectopic miR-99a expression downregulates insulin-like growth factor 1 receptor (IGF1R) protein and that the expression of miR-99a correlates negatively with IGF1R protein in OSCC cells. Insertion of the 3′UTR of IGF1R mRNA into the 3′UTR of a reporter gene markedly reduced luciferase activity in OSCC cells expressing miR-99a, suggesting that miR-99a reduces luciferase activity by targeting the 3′UTR of IGF1R mRNA. When evaluating the mechanisms of miR-99a downregulation, we observed the upregulation of miR-99a expression in serum-starved conditions and its suppression in response to insulin-like growth factor (IGF1) stimulation. Inhibitors of phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) kinase inhibited IGF1-induced suppression of miR-99a, suggesting the negative regulation of miR-99a expression by IGF1R signaling. CONCLUSION: Overall, results indicate that miR-99a functions as a tumor metastasis suppressor in OSCC cells and mutually regulates IGF1R expression in a reciprocal regulation

    Multiple Bony Injuries on Bone Scan in a Case of Unsuspected Child Abuse

    Get PDF
    This case is described of an eleven-month-old infant with lower limbs swelling and the left elbow skeletal malformation following a fall. The radionuclide bone scan was performed to exclude bone infection or congenital skeletal anomaly. The images unexpectedly showed multiple increased radioactive foci throughout the whole body. It was a strong probability of child abuse. All lesions are readily apparent on the following plain film radiographs and MRI

    Blockchain-Based Medical Record Management with Biofeedback Information

    Get PDF
    Blockchain is a new emerging technology of distributed databases, which guarantees the integrity, security and incorruptibility of data by means of the cryptography. Such features are suitable for secure and reliable data storage. This chapter investigates the blockchain-based architecture with applications to medical health record or biofeedback information management. This framework employs the smart contract to establish a medical record management system to ensure the privacy of patients. Moreover, the blockchain technique accelerates the medical record or information exchange such that the cost of human resource is significant reduced. All patients can manage their individual medical records and information easily in the different hospitals and clinics. They also have the privilege to deal with and authorize personal medical records in the proposed management framework

    Multiple domains in the Crumbs Homolog 2a (Crb2a) protein are required for regulating rod photoreceptor size

    Get PDF
    Background Vertebrate retinal photoreceptors are morphologically complex cells that have two apical regions, the inner segment and the outer segment. The outer segment is a modified cilium and is continuously regenerated throughout life. The molecular and cellular mechanisms that underlie vertebrate photoreceptor morphogenesis and the maintenance of the outer segment are largely unknown. The Crumbs (Crb) complex is a key regulator of apical membrane identity and size in epithelia and in Drosophila photoreceptors. Mutations in the human gene CRUMBS HOMOLOG 1 (CRB1) are associated with early and severe vision loss. Drosophila Crumbs and vertebrate Crb1 and Crumbs homolog 2 (Crb2) proteins are structurally similar, all are single pass transmembrane proteins with a large extracellular domain containing multiple laminin- and EGF-like repeats and a small intracellular domain containing a FERM-binding domain and a PDZ-binding domain. In order to begin to understand the role of the Crb family of proteins in vertebrate photoreceptors we generated stable transgenic zebrafish in which rod photoreceptors overexpress full-length Crb2a protein and several other Crb2a constructs engineered to lack specific domains. Results We examined the localization of Crb2a constructs and their effects on rod morphology. We found that only the full-length Crb2a protein approximated the normal localization of Crb2a protein apical to adherens junctions in the photoreceptor inner segment. Several Crb2a construct proteins localized abnormally to the outer segment and one construct localized abnormally to the cell body. Overexpression of full-length Crb2a greatly increased inner segment size while expression of several other constructs increased outer segment size. Conclusions Our observations suggest that particular domains in Crb2a regulate its localization and thus may regulate its regionalized function. Our results also suggest that the PDZ-binding domain in Crb2a might bring a protein(s) into the Crb complex that alters the function of the FERM-binding domain

    Epstein-Barr Virus Infection and Sporadic Breast Cancer Risk: A Meta-Analysis

    Get PDF
    BACKGROUND: A large number of epidemiological studies have evaluated the association between Epstein-Barr virus infection and breast carcinoma risk but results have been inconsistent. METHODOLOGY: Research using the polymerase chain reaction technique for detecting the Epstein-Barr virus was selected; 24 studies and 1535 cases were reviewed. Information on the study populations, sample types, publication calendar period and histological types of breast carcinoma were collected. An unconditional logistic regression model was used to analyze potential parameters related to the Epstein-Barr virus prevalence. A Kappa test was used to evaluate the consistency in detecting different Epstein-Barr virus DNA regions. Nine studies that included control groups and 1045 breast cancer cases were adopted in this meta-analysis. CONCLUSIONS: We found that 29.32% of the patients with breast carcinoma were infected with the Epstein-Barr virus. The prevalence of Epstein-Barr was highest in Asia (35.25%) and lowest in the USA (18.27%). Statistical analysis revealed a trend that showed lobular breast carcinoma might have the strongest association with Epstein-Barr virus infection. This meta-analysis showed a significant increase in breast malignancy risk in patients testing positive for the Epstein-Barr virus (OR = 6.29, 95% CI = 2.13-18.59). This result suggests that an Epstein-Barr virus infection is statistically associated with increased breast carcinoma risk

    Smoking, Green Tea Consumption, Genetic Polymorphisms in the Insulin-Like Growth Factors and Lung Cancer Risk

    Get PDF
    Insulin-like growth factors (IGFs) are mediators of growth hormones; they have an influence on cell proliferation and differentiation. In addition, IGF-binding protein (IGFBP)-3 could suppress the mitogenic action of IGFs. Interestingly, tea polyphenols could substantially reduce IGF1 and increase IGFBP3. In this study, we evaluated the effects of smoking, green tea consumption, as well as IGF1, IGF2, and IGFBP3 polymorphisms, on lung cancer risk. Questionnaires were administered to obtain the subjects' characteristics, including smoking habits and green tea consumption from 170 primary lung cancer cases and 340 healthy controls. Genotypes for IGF1, IGF2, and IGFBP3 were identified by polymerase chain reaction. Lung cancer cases had a higher proportion of smoking, green tea consumption of less than one cup per day, exposure to cooking fumes, and family history of lung cancer than controls. After adjusting the confounding effect, an elevated risk was observed in smokers who never drank green tea, as compared to smokers who drank green tea more than one cup per day (odds ratio (OR) = 13.16, 95% confidence interval (CI) = 2.96–58.51). Interaction between smoking and green tea consumption on lung cancer risk was also observed. Among green tea drinkers who drank more than one cup per day, IGF1 (CA)19/(CA)19 and (CA)19/X genotypes carriers had a significantly reduced risk of lung cancer (OR = 0.06, 95% CI = 0.01–0.44) compared with IGF1 X/X carriers. Smoking-induced pulmonary carcinogenesis could be modulated by green tea consumption and their growth factor environment

    Dimethyl Sulfoxide Promotes the Multiple Functions of the Tumor Suppressor HLJ1 through Activator Protein-1 Activation in NSCLC Cells

    Get PDF
    Background: Dimethyl sulfoxide (DMSO) is an amphipathic molecule that displays a diversity of antitumor activities. Previous studies have demonstrated that DMSO can modulate AP-1 activity and lead to cell cycle arrest at the G1 phase. HLJ1 is a newly identified tumor and invasion suppressor that inhibits tumorigenesis and cancer metastasis. Its transcriptional activity is regulated by the transcription factor AP-1. However, the effects of DMSO on HLJ1 are still unknown. In the present study, we investigate the antitumor effects of DMSO through HLJ1 induction and demonstrate the mechanisms involved. Methods and Findings: Low-HLJ1-expressing highly invasive CL1–5 lung adenocarcinoma cells were treated with various concentrations of DMSO. We found that DMSO can significantly inhibit cancer cell invasion, migration, proliferation, and colony formation capabilities through upregulation of HLJ1 in a concentration-dependent manner, whereas ethanol has no effect. In addition, the HLJ1 promoter and enhancer reporter assay revealed that DMSO transcriptionally upregulates HLJ1 expression through an AP-1 site within the HLJ1 enhancer. The AP-1 subfamily members JunD and JunB were significantly upregulated by DMSO in a concentration-dependent manner. Furthermore, pretreatment with DMSO led to a significant increase in the percentage of UV-induced apoptotic cells. Conclusions: Our results suggest that DMSO may be an important stimulator of the tumor suppressor protein HLJ1 throug

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV
    corecore