491 research outputs found

    Development and validation of a new prognostic system for patients with hepatocellular carcinoma.

    Get PDF
    Background Prognostic assessment in patients with hepatocellular carcinoma (HCC) remains controversial. Using the Italian Liver Cancer (ITA.LI.CA) database as a training set, we sought to develop and validate a new prognostic system for patients with HCC. Methods and Findings Prospective collected databases from Italy (training cohort, n = 3,628; internal validation cohort, n = 1,555) and Taiwan (external validation cohort, n = 2,651) were used to develop the ITA.LI.CA prognostic system. We first defined ITA.LI.CA stages (0, A, B1, B2, B3, C) using only tumor characteristics (largest tumor diameter, number of nodules, intra- and extrahepatic macroscopic vascular invasion, extrahepatic metastases). A parametric multivariable survival model was then used to calculate the relative prognostic value of ITA.LI. CA tumor stage, Eastern Cooperative Oncology Group (ECOG) performance status, Child\u2013 Pugh score (CPS), and alpha-fetoprotein (AFP) in predicting individual survival. Based on the model results, an ITA.LI.CA integrated prognostic score (from 0 to 13 points) was constructed, and its prognostic power compared with that of other integrated systems (BCLC, HKLC, MESIAH, CLIP, JIS). Median follow-up was 58 mo for Italian patients (interquartile range, 26\u2013106 mo) and 39 mo for Taiwanese patients (interquartile range, 12\u201361 mo). The ITA.LI.CA integrated prognostic score showed optimal discrimination and calibration abilities in Italian patients. Observed median survival in the training and internal validation sets was 57 and 61 mo, respectively, in quartile 1 (ITA.LI.CA score 1), 43 and 38 mo in quartile 2 (ITA.LI.CA score 2\u20133), 23 and 23 mo in quartile 3 (ITA.LI.CA score 4\u20135), and 9 and 8 mo in quartile 4 (ITA.LI.CA score > 5). Observed and predicted median survival in the training and internal validation sets largely coincided. Although observed and predicted survival estimations were significantly lower (log-rank test, p < 0.001) in Italian than in Taiwanese patients, the ITA.LI.CA score maintained very high discrimination and calibration features also in the external validation cohort. The concordance index (C index) of the ITA.LI.CA score in the internal and external validation cohorts was 0.71 and 0.78, respectively. The ITA.LI.CA score\u2019s prognostic ability was significantly better (p < 0.001) than that of BCLC stage (respective C indexes of 0.64 and 0.73), CLIP score (0.68 and 0.75), JIS stage (0.67 and 0.70), MESIAH score (0.69 and 0.77), and HKLC stage (0.68 and 0.75). The main limitations of this study are its retrospective nature and the intrinsically significant differences between the Taiwanese and Italian groups. Conclusions The ITA.LI.CA prognostic system includes both a tumor staging\u2014stratifying patients with HCC into six main stages (0, A, B1, B2, B3, and C)\u2014and a prognostic score\u2014integrating ITA.LI.CA tumor staging, CPS, ECOG performance status, and AFP. The ITA.LI.CA prognostic system shows a strong ability to predict individual survival in European and Asian populations

    Structure of hadron resonances with a nearby zero of the amplitude

    Get PDF
    We discuss the relation between the analytic structure of the scattering amplitude and the origin of an eigenstate represented by a pole of the amplitude.If the eigenstate is not dynamically generated by the interaction in the channel of interest, the residue of the pole vanishes in the zero coupling limit. Based on the topological nature of the phase of the scattering amplitude, we show that the pole must encounter with the Castillejo-Dalitz-Dyson (CDD) zero in this limit. It is concluded that the dynamical component of the eigenstate is small if a CDD zero exists near the eigenstate pole. We show that the line shape of the resonance is distorted from the Breit-Wigner form as an observable consequence of the nearby CDD zero. Finally, studying the positions of poles and CDD zeros of the KbarN-piSigma amplitude, we discuss the origin of the eigenstates in the Lambda(1405) region.Comment: 7 pages, 3 figures, v2: published versio

    Clinical Usefulness of Measuring Red Blood Cell Distribution Width in Patients with Hepatitis B

    Get PDF
    BACKGROUND: Red blood cell distribution width (RDW), an automated measure of red blood cell size heterogeneity (e.g., anisocytosis) that is largely overlooked, is a newly recognized risk marker in patients with cardiovascular diseases, but its role in persistent viral infection has not been well-defined. The present study was designed to investigate the association between RDW values and different disease states in hepatitis B virus (HBV)-infected patients. In addition, we analyzed whether RDW is associated with mortality in the HBV-infected patients. METHODOLOGY/PRINCIPAL FINDINGS: One hundred and twenty-three patients, including 16 with acute hepatitis B (AHB), 61 with chronic hepatitis B (CHB), and 46 with chronic severe hepatitis B (CSHB), and 48 healthy controls were enrolled. In all subjects, a blood sample was collected at admission to examine liver function, renal function, international normalized ratio and routine hematological testing. All patients were followed up for at least 4 months. A total of 10 clinical chemistry, hematology, and biochemical variables were analyzed for possible association with outcomes by using Cox proportional hazards and multiple regression models. RDW values at admission in patients with CSHB (18.30±3.11%, P<0.001), CHB (16.37±2.43%, P<0.001) and AHB (14.38±1.72%, P<0.05) were significantly higher than those in healthy controls (13.03±1.33%). Increased RDW values were clinically associated with severe liver disease and increased 3-month mortality rate. Multivariate analysis demonstrated that RDW values and the model for end-stage liver disease score were independent predictors for mortality (both P<0.001). CONCLUSION: RDW values are significantly increased in patients with hepatitis B and associated with its severity. Moreover, RDW values are an independent predicting factor for the 3-month mortality rate in patients with hepatitis B

    An animal-specific FSI model of the abdominal aorta in anesthetized mice

    Get PDF
    Recent research has revealed that angiotensin II-induced abdominal aortic aneurysm in mice can be related to medial ruptures occurring in the vicinity of abdominal side branches. Nevertheless a thorough understanding of the biomechanics near abdominal side branches in mice is lacking. In the current work we present a mouse-specific fluid-structure interaction (FSI) model of the abdominal aorta in ApoE(-/-) mice that incorporates in vivo stresses. The aortic geometry was based on contrast-enhanced in vivo micro-CT images, while aortic flow boundary conditions and material model parameters were based on in vivo high-frequency ultrasound. Flow waveforms predicted by FSI simulations corresponded better to in vivo measurements than those from CFD simulations. Peak-systolic principal stresses at the inner and outer aortic wall were locally increased caudal to the celiac and left lateral to the celiac and mesenteric arteries. Interestingly, these were also the locations at which a tear in the tunica media had been observed in previous work on angiotensin II-infused mice. Our preliminary results therefore suggest that local biomechanics play an important role in the pathophysiology of branch-related ruptures in angiotensin-II infused mice. More elaborate follow-up research is needed to demonstrate the role of biomechanics and mechanobiology in a longitudinal setting

    Drosophila Histone Deacetylase-3 Controls Imaginal Disc Size through Suppression of Apoptosis

    Get PDF
    Histone deacetylases (HDACs) execute biological regulation through post-translational modification of chromatin and other cellular substrates. In humans, there are eleven HDACs, organized into three distinct subfamilies. This large number of HDACs raises questions about functional overlap and division of labor among paralogs. In vivo roles are simpler to address in Drosophila, where there are only five HDAC family members and only two are implicated in transcriptional control. Of these two, HDAC1 has been characterized genetically, but its most closely related paralog, HDAC3, has not. Here we describe the isolation and phenotypic characterization of hdac3 mutations. We find that both hdac3 and hdac1 mutations are dominant suppressors of position effect variegation, suggesting functional overlap in heterochromatin regulation. However, all five hdac3 loss-of-function alleles are recessive lethal during larval/pupal stages, indicating that HDAC3 is essential on its own for Drosophila development. The mutant larvae display small imaginal discs, which result from abnormally elevated levels of apoptosis. This cell death occurs as a cell-autonomous response to HDAC3 loss and is accompanied by increased expression of the pro-apoptotic gene, hid. In contrast, although HDAC1 mutants also display small imaginal discs, this appears to result from reduced proliferation rather than from elevated apoptosis. The connection between HDAC loss and apoptosis is important since HDAC inhibitors show anticancer activities in animal models through mechanisms involving apoptotic induction. However, the specific HDACs implicated in tumor cell killing have not been identified. Our results indicate that protein deacetylation by HDAC3 plays a key role in suppression of apoptosis in Drosophila imaginal tissue

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Metabolomic analysis of human disease and its application to the eye

    Get PDF
    Metabolomics, the analysis of the metabolite profile in body fluids or tissues, is being applied to the analysis of a number of different diseases as well as being used in following responses to therapy. While genomics involves the study of gene expression and proteomics the expression of proteins, metabolomics investigates the consequences of the activity of these genes and proteins. There is good reason to think that metabolomics will find particular utility in the investigation of inflammation, given the multi-layered responses to infection and damage that are seen. This may be particularly relevant to eye disease, which may have tissue specific and systemic components. Metabolomic analysis can inform us about ocular or other body fluids and can therefore provide new information on pathways and processes involved in these responses. In this review, we explore the metabolic consequences of disease, in particular ocular conditions, and why the data may be usefully and uniquely assessed using the multiplexed analysis inherent in the metabolomic approach
    corecore