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Background
It is well known that excessive drinking is not only harm to personal health, but also 
induce serious consequences for the family and society. It harms the nervous system and 
the internal organs, furthermore, it causes cancer easily. According to the third national 
cancer survey in America, the consisting alcohol abuse is an important reason for the 
mouth, throat and esophagus cancer. The growing excessive drinking increases the risk 
of breast cancer by 13 % every year. In addition, there are data show that, on average, 
heavy drinkers die 10–20 years earlier than nondrinkers. 40 and 32 % of family divorce 
are caused by alcohol, in America and China, respectively (Inoue 2013; Rehm 2011; 
Ribes et al. 2008). At the same time, alcohol abusers often appear the phenomenon of 
early death or sudden suicide (Mash et al. 2014).

Heavy drinking has been treated as a chronic disease. More and more researchers 
study the harmfulness of binge drinking through establishing mathematical models 
to find some way to control the drinking behavior (Mulone 2012; Walters et  al. 2013; 
Santonja et  al. 2010; Mubayi et  al. 2010; Manthey et  al. 2008) and references cited 
therein. Mushayabasa and Bhunu (2011) established a deterministic model to assess the 
impact of binge drinking on the incidence of gonorrhea. Wang et  al. (2014) proposed 
an objective functional which considered not only alcohol quitting effects but also the 
cost of controlling alcohol, and they investigated optimal control strategies in an alco-
holism model with the help of Pontryagins Maximum Principle. Huo and Song (2012) 
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investigated a more realistic binge drinking model with two stages, in which the youths 
with alcohol problems were divided into those who admitted the problem and those who 
did not admit it.

Media, being the prime source of information, can not only influence the individu-
als’ behavior, but also affect the governments’ attitude. Generally, an effective method of 
reducing the spread of the disease is to make people understand the preventive meas-
ures as soon as possible. And media coverage has played a good role in controlling the 
infectious diseases. Many scholars introduced mathematical models with the impact of 
media to reduce the contact rate (Misra et al. 2011; Pang and Cui 2009; Samanta et al. 
2013) and references cited therein. Liu and Cui (2008) improved a general SIR model by 
using the type II functional response function to depict the transmission rate decreased 
by media coverage, they found that effective media measures can reduce the number 
of infections. Huo and Wang (2014) developed a nonlinear binge drinking model with 
the effect of awareness programs, they assumed that the cumulative density of media 
increased at a rate proportional to the number of heavy drinkers. Their results showed 
that media coverage was an effective method in reducing alcohol problems.

However, the above mentioned alcohol models are all based on the assumption of 
homogeneous mixing, they ignore the influence of alcohol propagation space. In fact, 
the contact process of population can not be uniform collision, different people contact 
person may be entirely different in per unit of time. Then studying the drinking dynam-
ics in the networks is more realistically.

With the rise of scientific researches on the network, the importance of heterogeneous 
social networks is perceived gradually. The complex network consists of a large num-
ber of nodes and edges, in which each node represents an individual in the real system, 
and each edge between two nodes represents the relationship between individuals. If a 
node has k edges, we define the node’s degree is k. A basic topological property in the 
networks is the degree distribution p(k), which is defined as the probability that a ver-
tex randomly chosen has k links (Newman 2003). In general, we often study models in 
the scale-free network, since it considers two important characteristics of the real-world 
network: growth and connection tendency. Many networks such as the social network, 
the internet and the World Wide Web have been found to be scale-free networks, it 
means that the degree distribution follows a power law p(k) ∼ ck−γ, with 2 < γ ≤ 3, 
where c satisfies the equality of 

∑n
k=1 p(k) = 1 (Liu et al. 2013).

Infectious diseases models in complex networks have been studied extensively, Shang 
(2013) studied a discrete-time SIS epidemic process in random networks. Local aware-
ness, global awareness and contact awareness, were considered. Based on the stability 
theory of matrix difference equation, they derived analytically the epidemic threshold 
and found that both local and contact awareness can raise the epidemic threshold, while 
the global awareness only decreases the epidemic prevalence. Using a modified SIS (sus-
ceptible–infected–susceptible) model, Shang (2013) investigated the effects of three 
forms of awareness (i.e., contact, local, and global) on the spread of a disease in a ran-
dom network. Connectivity-correlated transmission rates were assumed. By using the 
mean-field theory and numerical simulation, they showed that both local and contact 
awareness can raise the epidemic thresholds while the global awareness cannot. Their 
results showed that individual behaviors in the presence of an infectious disease had a 
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great influence on the epidemic dynamics. Shang (2015) addressed two forms of indi-
vidual awareness (i.e., the risk perception of an emerging epidemic). Contact awareness 
that increased with individual contact number, and local awareness that increased with 
the fraction of infected contacts. By extending the probability generating functionology, 
they showed that it was possible to track the evolution of the degree distributions among 
susceptible and infected individuals when the underlying network of contacts was repre-
sented by a semi-random configuration model. For the other infectious diseases models 
in the networks, we referred to Jin et al. (2011), Zhang and Jin (2011), Wang et al. (2012), 
Li et al. (2014), Wang and Jin (2013), Wang et al. (2013) and references cited therein.

Motivated by the above, in this paper, we construct a binge drinking model with the 
influence of media coverage in the scale-free network, which ignores the recruitment 
and death. Due to the effect of media coverage, nondrinkers form a separate class X(t) of 
those who are aware of risk and avoid contacting with the heavy drinkers.

The organization of this paper is as follows: In “The model formulation” section, we 
propose a binge drinking model with the influence of media coverage in the scale-free 
network. In “Analysis of the model” section, we prove the stability of the alcohol free 
equilibrium, the uniqueness of the alcohol present equilibrium and the permanence of 
the system. In “Numerical simulation” section, we present some numerical simulations. 
Some summaries and discussions are given in last section.

The model formulation
System description

To account for the heterogeneity in the contacts amongst individuals, we divide the total 
population N into n (n is the maximum degree) groups according to the degree of nodes, 
that is to say,

then the degree distribution

The value

is the mean degree. We further divide the groups into three classes according to the 
alcohol consumption: Sk(t), Xk(t), Ik(t). Sk(t) represents the number of nondrinkers or 
moderate drinkers whose degree is k; Xk(t) represents the number of the aware popula-
tion with degree k, who avoids contacting with binge drinkers; Ik(t) represents the num-
ber of binge drinkers with degree k; M(t) represents the cumulative density of awareness 
programs driven by media. d’Onofrio et al. (2007) considered two distinct possibilities: 
(a) M(t) only summarizes information about the current state of the disease, i.e. M(t) 
only depends on current values of state variables, and (b) M(t) also summarizes informa-
tion about past values of state variables. Motivated by Wang et al. (2013), we assume that 

(1)N = N1 + N2 + · · · + Nn,

(2)p(k) =
Nk

N
.

(3)�k� =
n

∑

k=1

kp(k),
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M(t) only depends on current values of state variables and is a linear function of the cur-
rent prevalence of the binge drinkers. Then

The model’s structure is shown in Fig. 1. The transfer diagram leads to the following 
system of 3n+ 1 ordinary differential equations

where θ(t) = 1
�k�

∑n
k=1 kp(k)

Ik
Nk

 represents the probability that an edge of nondrinkers 
or moderate drinkers links to binge drinkers in uncorrelated networks, and it is between 
0 and 1. We let the transmission coefficient be β. Then the number of Sk, who has k links, 
turning to Ik is kβSkθ(t). For simplicity, in our model, we only consider the impact of 
media on nondrinkers or moderate drinkers, then Sk form a new compartment Xk, in 
which people avoid contacting with binge drinkers. When binge drinkers receive treat-
ments or other interventions, they will recover to Sk at rate µ. This method has been 
used in literature (Misra et al. 2011; Huo and Wang 2014). α represents the dissemina-
tion rate of awareness among nondrinkers or moderate drinkers. Since the influence of 
media can not be permanent, when the awareness of avoiding contacting with alcohol-
ics is gradually fading, Xk will no longer consciously cut off the contact with alcoholics. 
Then they will return to Sk at the transformation rate σ. ω is a positive constant, and 
represents the growth rate of media. γ represents the depletion rate of media coverage 
resulted by ineffective measures. All the parameters can be found in Table 1, and they 
are positive constants.

According to the practical significance of system (5), if binge drinkers extinct, there is 
no meaning to report. It means that binge drinkers are the source of media coverage in 
our model. Thus we assume that the density of media coverage is equal to zero when the 
number of binge drinkers is equal to zero. In addition, nondrinkers or moderate drinkers 

(4)Nk(t) = Sk(t)+ Xk(t)+ Ik(t), k = 1, 2, . . . , n.

(5)

dSk(t)

dt
= −βkSkθ(t)− αSkM + µIk + σXk ,

dXk(t)

dt
= αSkM − σXk ,

dIk(t)

dt
= βkSkθ(t)− µIk , k = 1, 2, . . . , n,

dM(t)

dt
= ω

n
∑

k=1

Ik − γM.

Fig. 1 Transfer diagram of model (5)
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Sk is the unique source of the aware population Xk(t), so Xk(t) is also equal to zero when 
there is no media coverage.

Positivity and boundedness of solutions

Lemma 1 Let (S1(t), X1(t), I1(t), . . . , Sn(t), Xn(t), In(t), M(t)) be the solution 
of system (5), if Sk(0) > 0, Xk(0) > 0, Ik(0) > 0, M(0) > 0 and θ(0) > 0, then for 
k = 1, 2, . . . , n, then Sk(t) > 0,Xk(t) > 0, Ik(t) > 0, M(t) > 0 and θ(t) > 0 for all t > 0.

Proof Adding the first three equations of system (5), we have

Substituting the third equation of system (5) into the formula of θ(t), we get

it implies that

Since θ(0) > 0, we obtain θ(t) > 0 for all t > 0. Using the continuity of Sk(t), since 
Sk(0) > 0, we can find a small δ > 0 , such that Sk(t) > 0 for 0 < t < δ. Now we prove 
that Sk(t) > 0 for all t > 0. If not, we assume a contradiction that there exists t1 ≥ δ > 0 , 
such that Sk(t1) = 0 and Sk(t) > 0 for all 0 < t < t1. From the third equation of system 
(5), we have

then

dNk(t)

dt
=

dSk(t)

dt
+

dXk(t)

dt
+

dIk(t)

dt
= 0.

θ ′(t) = 1
〈

k
〉

n
∑

k=1

kp(k)
I ′k(t)Nk(t)− 0

N 2
k (t)

= 1
〈

k
〉

n
∑

k=1

kp(k)
I ′k(t)

Nk(t)

= θ(t)

[

1
〈

k
〉

n
∑

k=1

kp(k)
βkSk(t)

Nk(t)
− µ

]

,

θ(t) = θ(0)exp

[

−µt +
1
〈

k
〉

∫ t

0

n
∑

k=1

kp(k)
βkSk(τ )

Nk(τ )
dτ

]

.

I ′k(t)+ µIk(t) = βkSk(t)θ(t) > 0, 0 < t < t1,

Ik(t) > Ik(0)e
−µt > 0, 0 < t < t1.

Table 1 The parameters description of model (5)

Parameter Description

β The transmission coefficient for nondrinkers or moderate drinkers turning to binge drinkers

µ The recovery rate of binge drinkers

α The dissemination rate of awareness among nondrinkers or moderate drinkers

σ The transformation rate from aware individuals to nondrinkers or moderate drinkers

ω The growth rate of media

γ The depletion rate of media resulted by ineffective measures
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From the last equation of system (5), we have

it follows that

Similarly, from the second equation of system (5), we have

then

Using the continuity of Xk(t) and Ik(t), we have Xk(t1) ≥ 0 and Ik(t1) ≥ 0, so

That is to say, Sk(t) ≤ 0 for 0 < t < t1, which is contradictory. Thus Sk(t) > 0 for all 
t > 0. Similarly, we can prove that Xk(t) > 0, Ik(t) > 0 and M(t) > 0 for all t > 0. Hence 
the proof is completed.  �

Lemma 2 All feasible solutions of system (5) are in the following bounded region

Proof Since dNk(t)/dt = 0, then Sk(t)+ Xk(t)+ Ik(t) = Nk(t) is constant. 
Furthermore, the positivity of solutions is proved in Lemma 1, it implies that 
0 ≤ Sk(t),Xk(t), Ik(t) ≤ Nk(t). From the last equation of system (5), we have

it follows that

thus

So the region � is a positively invariant set of system (5). This completes the proof of 
Lemma 2.  �

M′(t) > 0− γM(t), 0 < t < t1,

M(t) > M(0)e−γ t > 0, 0 < t < t1.

X ′
k(t)+ σXk(t) = αSk(t)M(t) > 0, 0 < t < t1,

Xk(t) > Xk(0)e
−σ t > 0, 0 < t < t1.

S′k(t1) = µIk(t1)+ σXk(t1) ≥ 0.

(6)

� =
{

(S1(t), X1(t), I1(t), . . . , Sn(t), Xn(t), In(t), M(t)) ∈ R3n+1
+ |0 ≤ Sk(t),Xk(t),

Ik(t) ≤ Nk(t), Sk(t)+ Xk(t)+ Ik(t) = Nk(t), 1 ≤ k ≤ n, 0 ≤ M(t) ≤
ωN

γ

}

.

0− γM ≤ M′(t) ≤ ωN − γM,

0 ≤ M(0)e−γ t ≤ M(t) ≤
ωN

γ
+M(0)e−γ t ,

lim
t→∞

supM(t) ≤
ωN

γ
.
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Analysis of the model
The basic reproduction number and alcohol free equilibrium

We define the relative density of nondrinkers or moderate drinkers, aware population 
and binge drinkers with degree k by sk(t) = Sk (t)

Nk
, xk(t) = Xk (t)

Nk
, ik(t) = Ik (t)

Nk
, then 

sk(t)+ xk(t)+ ik(t) = 1. So system (5) can be written as

where θ(t) = 1
�k�

∑n
k=1 kp(k)ik. Let

It can be verified that region Ŵ is a positively invariant set of system (7).
System (7) has a unique alcohol free equilibrium given by

Using the next generation matrix method (Driessche and Watmough 2002), we calculate 
the basic reproduction number R0 = ρ(FV−1). In our case, the production of new binge 
drinkers F  and the rate of transfer of individuals V  are given by

Calculating the Jacobian matrices of F  and V  at E0 as follows

(7)

dxk(t)

dt
= α(1− xk − ik)M − σxk ,

dik(t)

dt
= βk(1− xk − ik)θ(t)− µik , k = 1, 2, . . . , n,

dM(t)

dt
= ωN

n
∑

k=1

p(k)ik − γM,

(8)

Ŵ =
{

(x1(t), i1(t), . . . , xn(t), in(t),M(t)) ∈ R2n+1
+ |0 ≤ xk(t), ik(t) ≤ 1,

0 ≤ xk(t)+ ik(t) ≤ 1, 1 ≤ k ≤ n, 0 ≤ M(t) ≤
ωN

γ

}

.

(9)E0 = (0, 0, . . . , 0, 0, . . . , 0, 0, 0).

F =































β(1− x1 − i1)θ
β2(1− x2 − i2)θ

...
βn(1− xn − in)θ

0
0
...
0
0































2n+1

, V =



































µi1
µi2
...

µin
σx1 − α(1− x1 − i1)M
σx2 − α(1− x2 − i2)M

...
σxn − α(1− xn − in)M

γM − ωN
n
�

k=1

p(k)ik



































2n+1

.

F = DF (E0) =





F11 0 0
0 0 0
0 0 0





(2n+1)×(2n+1)

,

V = DV (E0) =





V11 0 0
0 V22 V23

V31 0 V33





(2n+1)×(2n+1)

,
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where

V11 = µE,V22 = σE,V33 = γ, E represents a unit matrix and 0 represents a zero matrix. 
Finally, we calculate the basic reproduction number R0 = β�k2�

µ�k� .
Following Theorem 2 of Driessche and Watmough (2002), we have the following result 

on the local stability of E0.

Theorem 1 The alcohol free equilibrium E0 of system (7) is locally asymptotically stable 
if R0 < 1, but unstable if R0 > 1.

Next, we will prove the globally asymptotically stability of E0.

Theorem 2 The alcohol free equilibrium E0 of system (7) is globally asymptotically sta-
ble if R0 < 1.

Proof Let
 i1 = y1, i2 = y2, . . . , in = yn, x1 = yn+1, x2 = yn+2, . . . , xn = y2n,M = y2n+1, y =

(y1, y2, . . . , y2n+1)
T , g(j) = jp(j)

�k� , then system (7) can be written in terms of

where

F11 =
β

�k�











p(1) 2p(2) · · · np(n)

2p(1) 22p(2) · · · 2np(n)
...

...
. . .

...

np(1) n2p(2) · · · n2p(n)











n×n

,

V23 =
�

−α −α · · · −α
�T

n
,

V31 =
�

−ωNp(1) −ωNp(2) · · · −ωNp(n)
�

n
,

(10)
dy

dt
= Ay+ N (y),

A =





A11 0 0
0 A22 A23

A31 0 A33



,

A11 =









βg(1)− µ βg(2) · · · βg(n)
β2g(1) β2g(2)− µ · · · β2g(n)

...
...

. . .
...

βng(1) βng(2) · · · βng(n)− µ









n×n

,

A23 =
�

α α · · · α
�T

n
,

A31 =
�

ωNp(1) ωNp(2) · · · ωNp(n)
�

n
,

A22 = −σE,A33 = −γ ,
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and

Thus

Considering the following linear system

If R0 < 1, all eigenvalues of A have negative real parts (Driessche and Watmough 2002). 
It follows that system (12) is stable whenever R0 < 1. So ik(t) → 0, xk(t) → 0,M(t) → 0 , 
as t → ∞, for this linear system. Since (12) is a quasi monotone system, by the com-
parison theorem (Lakshmikantham et  al. 1989), the nonlinear system (7) follows that 
ik(t) → 0, xk(t) → 0,M(t) → 0, as t → ∞, for R0 < 1. So the alcohol free equilibrium 
E0 of system (7) is globally asymptotically stable. The proof is complete.  �

The existence and uniqueness of the alcohol present equilibrium

Theorem 3 If R0 > 1, system (7) has a unique alcohol present equilibrium

Proof Let right side of system (7) be equal to 0, we obtain the following system

where i∗ =
∑n

k=1 p(k)i
∗
k > 0. From the third equation of system (13), we have

Substituting (14) into the first equation of system (13), we have

N (y) = −































βθ(y1 + yn+1)

2βθ(y2 + yn+2)
...

nβθ(yn + y2n)
αy2n+1(y1 + yn+1)

αy2n+1(y2 + yn+2)
...

αy2n+1(yn + y2n)
0































2n+1

.

(11)
dy

dt
≤ Ay.

(12)
dy

dt
= Ay.

E∗(x∗1, i
∗
1, . . . , x

∗
n, i

∗
n,M

∗).

(13)

α(1− x∗k − i∗k)M
∗ − σx∗k = 0,

βk(1− x∗k − i∗k)θ − µi∗k = 0,

ωNi∗ − γM∗ = 0.

(14)M∗ = ωNi∗

γ
.

(15)x∗k =
αωNi∗ − αωNi∗i∗k

αωNi∗ + γ σ
.
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Substituting (15) into the second equation of system (13), we obtain

Multiplying Eq. (16) by p(k) and summing over k, we obtain the result

According to the definition of i∗, we have

where � = (γ σµ)2 + 4αµωNγ σβ�k�θ(1− θ), θ ∈ [0, 1]. On the other hand, we get the 
following equation from (16) is that

Substituting (18) into (19), we have

Substituting (20) into the expression of θ(t) = 1
�k�

∑n
k=1 kp(k)i

∗
k , then we obtain a self-

consistency equation as follows

If we let

then Eq. (21) is equivalent to the following equation

Obviously, Eq. (23) has a trivial solution θ = 0. For

where

hence, f ′(0) > 0. Through a similar derivation, we obtain that

(16)αµωNi∗i∗k − γ σβkθ + γ σβkθ i∗k + γ σµi∗k = 0.

(17)αµωN (i∗)2 + γ σµi∗ − γ σβ�k�(θ − θ2) = 0.

(18)i∗ =
−γ σµ+

√
�

2αµωN
,

(19)i∗k =
γ σβkθ

αµωNi∗ + γ σβkθ + γ σµ
.

(20)i∗k =
2γ σβkθ

γ σµ+ 2γ σβkθ +
√
�
.

(21)θ = 1

�k�

n
∑

k=1

kp(k)
2γ σβkθ

γ σµ+ 2γ σβkθ +
√
�
.

(22)f (θ) = 1− 2

�k�

n
∑

k=1

kp(k)
γ σβk

γ σµ+ 2γ σβkθ +
√
�
,

(23)θ f (θ) = 0.

(24)
f ′(θ) = 2

�k�

n
∑

k=1

kp(k)
A

B2
,

A = 2γ 2σ 2β2k[k + αµωN �k�(1− 2θ)/
√
�],

B = γ σµ+ 2γ σβkθ +
√
� > 0,

(25)
f ′′(θ) =

2

�k�

n
∑

k=1

kp(k)
B2 dA

dθ
− 2ABdB

dθ

B4
,
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where

then

thus f ′′(θ) < 0, that is to say, f (θ) is a convex function for θ ∈ [0, 1]. Furthermore, when 
R0 > 1,

So there exists a unique positive equilibrium E∗(x∗1, i
∗
1, . . . , x

∗
n, i

∗
n,M

∗) of system (7). The 
prove is complete.  �

The permanence of the system

The permanence of system (7) is proved in the following theorem. First, we present two 
lemmas in Lajmanovich and Yorke (1976).

Lemma 3 Let A = (aij)n×n be an irreducible matrix, if aij ≥ 0 for all i �= j, then there 
exists an eigenvector z of A such that z > 0, and the corresponding eigenvalue is s(A).

The stability modulus s(A) is defined by s(A) = maxi{Re�i}, i = 1, 2, . . . , n, where �i are 
the eigenvalues of A, Re denotes the real part.

Lemma 4 Consider the system

where P is an n× n matrix and N(y) is continuously differentiable in a region D ∈ Rn. 
Assume

1. the compact convex set C⊂D is positively invariant with respect to system (26), and 
0 ∈ C;

2. limy→0

∥

∥N (y)
∥

∥/
∥

∥y
∥

∥ = 0;
3. there exist r > 0 and a (real) eigenvector z of PT such that (z · y) ≥ r

∥

∥y
∥

∥ for all y ∈ C;

dA

dθ
=

2γ 2σ 2β2k
[

−2αµωN �k�
√
�− 2α2µ2ω2N 2γ σβ�k�2(1− 2θ)2/

√
�

]

�
< 0,

dB

dθ
= 2γ σβ

[

k +
αµωN �k�(1− 2θ)√

�

]

,

A
dB

dθ
= 4γ 3σ 3β3k

[

k +
αµωN �k�(1− 2θ)√

�

]2

> 0,

B2 dA

dθ
− 2AB

dB

dθ
= B

(

B
dA

dθ
− 2A

dB

dθ

)

< 0,

f (1) = 1−
2

�k�

n
∑

k=1

kp(k)
γ σβk

γ σµ+ 2γ σβk + γ σµ
> 1−

2

�k�

n
∑

k=1

kp(k)
γ σβk

2γ σβk
= 1−

�k�
�k�

= 0,

f (0) = 1−
2

�k�

n
∑

k=1

kp(k)
γ σβk

γ σµ+ γ σµ
= 1−

2

�k�

γ σβ
n
∑

k=1

k2p(k)

2γ σµ
= 1−

β�k2�
µ�k�

= 1− R0 < 0.

(26)
dy

dt
= Py+ N (y),
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4. (z · N (y)) ≤ 0 for all y ∈ C; and
5. y = 0 is the largest positively invariant set for system (26) contained in 

H = {y ∈ C
∣

∣(z · N (y)) = 0 }.Then either y = 0 is globally asymptotically sta-
ble in C, or for any y0 ∈ C − {0} the solution φ(t, y0) of system (26) satisfies 
lim inf t→∞

∥

∥φ(t, y0)
∥

∥ ≥ m, where m > 0, independent of y0. Moreover, there exists a 
constant solution of system (26), y = y∗, y∗ ∈ C − {0}.

Theorem 4 If R0 > 1, system (7) is permanent, i.e. there exists an ε > 0, such that

where (x1(t), i1(t), . . . , xn(t), in(t),M(t)) is any solution of system (7), satisfying Ŵ and 
ik(0) > 0.

Proof Considering the vectorial form (10) of system (7),

1. clearly, the compact convex set Ŵ in formula (8) is a positively invariant set for system 
(10), and 0 ∈ Ŵ;

2. 

 thus lim
y→0

∥

∥N (y)
∥

∥/
∥

∥y
∥

∥ = 0;
3. AT

11 = (aij)n×n be an irreducible matrix, and aij ≥ 0 for all i �= j, then from Lemma 
3, there exists a positive eigenvector z̃ = (z1, z2, . . . , zn) of AT

11, and the correspond-
ing eigenvalue is s(AT

11). When R0 > 1, s(AT
11) > 0. Let zn+1 = · · · = z2n+1 = 0, 

z = (z̃, zn+1, . . . , z2n+1) = (z1, z2, . . . , z2n+1), then ATz = s(AT
11)z, i.e. z is the eigen-

vector of AT corresponding eigenvalue is s(AT
11). Take r = min1≤i≤n{zi} > 0, then 

(

z · y
)

≥ r
∥

∥y
∥

∥ for all y ∈ Ŵ;
4. (z · N (y)) ≤ 0 for all y ∈ Ŵ, since zi ≥ 0 and (N (y))i ≤ 0, i = 1, 2, . . . , 2n+ 1;
5. let H = {y ∈ Ŵ

∣

∣(z · N (y)) = 0 }. If y ∈ H , then 
∑n

k=1 zkβθk(yk + yn+k) = 0. Since 
zk > 0, β > 0, k > 0 and θ(t) = 1

�k�
∑n

k=1 kp(k)yk, thus yk must be equal to zero. 
Accroding to the assume of system (5), we get that y = 0 is the only solution con-
tained in H, thus it is the largest positively invariant set for system (10).

All the hypotheses of Lemma 4 are satisfied, then system (7) is permanent. The theorem 
is proved completely.  �

lim inf
t→∞

{(x1(t), i1(t), . . . , xn(t), in(t),M(t))} ≥ ε,

0 ≤ lim
y→0

∥

∥N (y)
∥

∥/
∥

∥y
∥

∥

= lim
y→0

√

β2θ2(y1 + yn+1)
2 + · · · + n2β2θ2(yn + y2n)

2 + α2y22n+1(y1 + yn+1)
2 + · · · + α2y22n+1(yn + y2n)

2

√

y21 + y22 + · · · + y22n+1

≤ lim
y→0

√

(n2β2θ2 + α2y22n+1)
[

(y1 + yn+1)
2 + · · · + (yn + y2n)

2
]

√

y21 + y22 + · · · + y22n+1

≤ lim
y→0

√

2(n2β2θ2 + α2y22n+1)
[

(y21 + y2n+1)+ · · · + (y2n + y22n)+ y22n+1

]

√

y21 + y22 + · · · + y22n+1

= lim
y→0

√

2(n2β2θ2 + α2y22n+1)

= 0,
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Conjecture If R0 > 1, the alcohol present equilibrium E∗ of system (7) is globally 
asymptotically stable.

Remark We have great difficulty in proving the global stability of E∗. Then we only 
carry out simulations to test our conjecture (Figs. 2b, 4). It is still an open problem to 
prove the global stability of E∗.

Numerical simulation
To illustrate our theoretical results, we present some numerical simulations. In the scale-
free network, we take N = 1000, p(k) = 2m2k−3 (m is the minimum degree, we take 
m = 3). The values of some parameters in our model are estimated as µ = 0.4, σ = 0.2 , 
α = 0.1, β = 0.02 or β = 0.04, other parameters are cited in Wang et  al. (2013) as 
γ = 0.05, ω = 0.0005, β = 0.02, then R0 = 0.7597 < 1. R0 = 1.5194 > 1 when β = 0.04.

Firstly, we investigate the time evolution for the total density of population 
s(t) =

∑n
k=1 p(k)sk(t), x(t) =

∑n
k=1 p(k)xk(t), i(t) =

∑n
k=1 p(k)ik(t), and M(t). When 

R0 < 1, limt→∞(x(t), i(t),M(t)) = (0, 0, 0), that is to say, the phenomenon of alcohol 
abuse will disappear, E0 is globally asymptotically stable (Fig. 2a); When R0 > 1, as time 
going on, the solution of system (7) finally tends to a unique positive constant, which 
means the phenomenon of alcohol abuse will be prevalent and E∗ is globally asymptoti-
cally stable (Fig. 2b).

Secondly, we present the time evolution of the density of nondrinkers or moder-
ate drinkers sk, aware population xk and binge drinkers ik with different degrees k = 3 , 
k = 40 and k = 80. The initial conditions are chosen as sk(0) = 0.7, xk(0) = 0.1, 
ik(0) = 0.2, M(0) = 0.2. Figure 3 performs the case of R0 = 0.7597 < 1. From Fig. 3, we 
know that the greater k is, the greater density of binge drinkers is in that group, and the 
slower the phenomenon of binge drinking vanishes, when R0 < 1. Figure 4 performs the 
other case of R0 = 1.5194 > 1, it shows that the density of binge drinkers ik is propor-
tional to the value of k. However, ik finally tends to a positive constant, the phenomenon 
of alcohol abuse will be prevalent.

Thirdly, we study the influence of parameter ω on the total density of binge drinkers 
(Fig. 5). With ω = 0.0005, 0.01, 0.05 (from top to bottom). When R0 < 1, increasing the 

a b
Fig. 2 The time series for the total density of population in the scale‑free network. a R0 < 1, b R0 > 1
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value of ω could accelerate the extinction of the phenomenon of alcohol abuse (Fig. 5a); 
When R0 > 1, media coverage can’t change the value of R0, but it reduces the final binge 
drinkers’ density largely (Fig. 5b).

Conclusions and discussions
In this paper, we use mean-field theory to propose a binge drinking model with the 
impact of media in the scale-free network. The outcomes show that E0 and E∗ are all 
globally asymptotically stable. It means that the phenomenon of alcohol abuse will dis-
appear if R0 < 1, otherwise it will be prevalent if R0 > 1.

Comparing with the drinking model on homogeneous networks Huo and Wang 
(2014). The basic reproductive number in our model is in direct proportion to the 

a b c
Fig. 3 The time evolution of the density of sk, xk and ik with different degrees k = 3, k = 40 and k = 80, when 
R0 < 1, a for sk, b for xk, c for ik

a b c
Fig. 4 The time evolution of the density of sk, xk and ik with different degrees k = 3, k = 40 and k = 80, when 
R0 > 1, a for sk, b for xk, c for ik

a b
Fig. 5 The influence of different values of ω on the total density of binge drinkers, respectively. a R0 < 1, b 
R0 > 1



Page 15 of 16Huo and Wang  SpringerPlus  (2016) 5:204 

heterogeneous parameter �k2� ≫ �k�. So, network heterogeneity makes drinking behav-
ior more easily to spread. At the same time, we discuss the influence of different ω on 
the total density of binge drinkers, finding that media coverage is an effective measure in 
reducing alcohol problems though it does not change the spreading threshold.
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