243 research outputs found

    Targeting the anti-apoptotic BCL-2 family members for the treatment of cancer

    No full text
    Most cells express a variety of both anti-apoptotic and pro-apoptotic Bcl-2 proteins and the interaction within this family dictates whether a cell survives or dies. The dysregulation of the anti-anti-apoptotic Bcl-2 family members is one of the defining features of cancer cells in comparison to normal cells, and significantly contributes to the resistance of cancer cells to current treatment modalities. This anti-apoptotic subfamily of proteins is now a major target in the development of new methods to improve treatment outcomes for cancer patients. Several drugs directed at inhibiting Bcl-2 and related anti-apoptotic proteins have been developed with some showing considerable promise in the clinic. This Review presents the current knowledge of the role of the anti-apoptotic Bcl-2 family in cancer cells, as well as current and future perspectives on targeting this subfamily of proteins for therapeutic intervention in human malignancies. This article is part of a Special Issue entitled “Apoptosis: Four Decades Later”

    Temporal and spatial carbon dioxide concentration patterns in a small boreal lake in relation to ice-cover dynamics

    Get PDF
    Global carbon dioxide (CO2) emission estimates from inland waters commonly neglect the ice-cover season. To account for CO2 accumulation below ice and consequent emissions into the atmosphere at ice-melt we combined automatically-monitored and manually- sampled spatially-distributed CO2 concentration measurements from a small boreal ice-covered lake in Sweden. In early winter, CO2 accumulated continuously below ice, whereas, in late winter, CO2 concentrations remained rather constant. At ice-melt, two CO2 concentration peaks were recorded, the first one reflecting lateral CO2 transport within the upper water column, and the second one reflecting vertical CO2 transport from bottom waters. We estimated that 66%–85% of the total CO2 accumulated in the water below ice left the lake at ice-melt, while the remainder was stored in bottom waters. Our results imply that CO2 accumulation under ice and emissions at ice-melt are more dynamic than previously reported, and thus need to be more accurately integrated into annual CO2 emission estimates from inland waters

    Increased winter drownings in ice-covered regions with warmer winters

    Get PDF
    Winter activities on ice are culturally important for many countries, yet they constitute a high safety risk depending upon the stability of the ice. Because consistently cold periods are required to form stable and thick ice, warmer winters could degrade ice conditions and increase the likelihood of falling through the ice. This study provides the first large-scale assessment of winter drowning from 10 Northern Hemisphere countries. We documented over 4000 winter drowning events. Winter drownings increased exponentially in regions with warmer winters when air temperatures neared 0 ̊C. The largest number of drownings occurred when winter air temperatures were between -5 ̊C and 0 ̊C, when ice is less stable, and also in regions where indigenous traditions and livelihood require extended time on ice. Rates of drowning were greatest late in the winter season when ice stability declines. Children and adults up to the age of 39 were at the highest risk of winter drownings. Beyond temperature, differences in cultures, regulations, and human behaviours can be important additional risk factors. Our findings indicate the potential for increased human mortality with warmer winter air temperatures. Incorporating drowning prevention plans would improve adaptation strategies to a changing climate.Funding was provided to SS by the Ontario Ministry of Research, Innovation and Science Early Researcher Award and York University Research Chair programme. Funding support for BAD was provided by Kempestiftelserna. AL was supported by Estonian Research Council Grant PSG 32. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Funding was provided to SS by the Ontario Ministry of Research, Innovation and Science Early Researcher Award and York University Research Chair programme. Funding support for BAD was provided by Kempestiftelserna. AL was supported by Estonian Research Council Grant PSG 32. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
    corecore