118 research outputs found

    Career Experience and Executive Performance: Evidence from Former Equity Research Analysts

    Get PDF
    This study examines CEOs and CFOs who have prior work experience as equity research analysts. Consistent with backgrounds in forecasting and valuation, we find these executives provide earnings guidance that is more accurate than that of other executives, and their M&A transactions generate significantly higher announcement returns. For available CEOs and CFOs, we examine their track records as research analysts with respect to forecasting accuracy and stock recommendation profitability. We find a positive association between a record of past forecasting accuracy and more accurate earnings guidance, as well as a positive association between past stock recommendation profitability and M&A announcement returns. Beyond these traits, we find these executives provide greater certainty in their answers to analysts during conference calls, especially when answering forward-looking questions. Finally, these executives’ firms exhibit superior accounting and stock return performance. Overall, our evidence suggests early career skill sets can shape top executive performance outcomes

    Synaptic Targeting and Function of SAPAPs Mediated by Phosphorylation-Dependent Binding to PSD-95 MAGUKs

    Get PDF
    The PSD-95/SAPAP/Shank complex functions as the major scaffold in orchestrating the formation and plasticity of the post-synaptic densities (PSDs). We previously demonstrated that the exquisitely specific SAPAP/Shank interaction is critical for Shank synaptic targeting and Shank-mediated synaptogenesis. Here, we show that the PSD-95/SAPAP interaction, SAPAP synaptic targeting, and SAPAP-mediated synaptogenesis require phosphorylation of the N-terminal repeat sequences of SAPAPs. The atomic structure of the PSD-95 guanylate kinase (GK) in complex with a phosphor-SAPAP repeat peptide, together with biochemical studies, reveals the molecular mechanism underlying the phosphorylation-dependent PSD-95/SAPAP interaction, and it also provides an explanation of a PSD-95 mutation found in patients with intellectual disabilities. Guided by the structural data, we developed potent non-phosphorylated GK inhibitory peptides capable of blocking the PSD-95/SAPAP interaction and interfering with PSD-95/SAPAP-mediated synaptic maturation and strength. These peptides are genetically encodable for investigating the functions of the PSD-95/SAPAP interaction in vivo. Using structural biology, cell biology, and electrophysiology approaches, Zhu et al. demonstrate that phosphorylation of the N-terminal repeating sequences of SAPAPs is required for the SAPAP/PSD-95 complex formation and SAPAP's synaptic targeting and maturation functions. They also developed a potent non-phosphorylated PSD-95 GK inhibitory peptide that can effectively disrupt the SAPAP/PSD-95 complex formation and thus inhibit excitatory synaptic activities. Keywords: GK domain; PSD-95; SAPAP; MAGUK; postsynaptic density; synaptic scaffold proteins; synaptogenesis; synaptic plasticit

    A Critical Site in the Core of the CCR5 Chemokine Receptor Required for Binding and Infectivity of Human Immunodeficiency Virus Type 1

    Get PDF
    Like the CCR5 chemokine receptors of humans and rhesus macaques, the very homologous (∼98–99% identical) CCR5 of African green monkeys (AGMs) avidly binds β-chemokines and functions as a coreceptor for simian immunodeficiency viruses. However, AGM CCR5 is a weak coreceptor for tested macrophage-tropic (R5) isolates of human immunodeficiency virus type 1 (HIV-1). Correspondingly, gp120 envelope glycoproteins derived from R5 isolates of HIV-1 bind poorly to AGM CCR5. We focused on a unique extracellular amino acid substitution at the juncture of transmembrane helix 4 (TM4) and extracellular loop 2 (ECL2) (Arg for Gly at amino acid 163 (G163R)) as the likely source of the weak R5 gp120 binding and HIV-1 coreceptor properties of AGM CCR5. Accordingly, a G163R mutant of human CCR5 was severely attenuated in its ability to bind R5 gp120s and to mediate infection by R5 HIV-1 isolates. Conversely, the R163G mutant of AGM CCR5 was substantially strengthened as a coreceptor for HIV-1 and had improved R5 gp120 binding affinity relative to the wild-type AGM CCR5. These substitutions at amino acid position 163 had no effect on chemokine binding or signal transduction, suggesting the absence of structural alterations. The 2D7 monoclonal antibody has been reported to bind to ECL2 and to block HIV-1 binding and infection. Whereas 2D7 antibody binding to CCR5 was unaffected by the G163R mutation, it was prevented by a conservative ECL2 substitution (K171R), shared between rhesus and AGM CCR5s. Thus, it appears that the 2D7 antibody binds to an epitope that includes Lys-171 and may block HIV-1 infection mediated by CCR5 by occluding an HIV-1-binding site in the vicinity of Gly-163. In summary, our results identify a site for gp120 interaction that is critical for R5 isolates of HIV-1 in the central core of human CCR5, and we propose that this site collaborates with a previously identified region in the CCR5 amino terminus to enable gp120 binding and HIV-1 infections

    TL1A–DR3 interaction regulates Th17 cell function and Th17-mediated autoimmune disease

    Get PDF
    T helper type 17 (Th17) cells play an important pathogenic function in autoimmune diseases; their regulation, however, is not well understood. We show that the expression of a tumor necrosis factor receptor family member, death receptor 3 (DR3; also known as TNFRSF25), is selectively elevated in Th17 cells, and that TL1A, its cognate ligand, can promote the proliferation of effector Th17 cells. To further investigate the role of the TL1A–DR3 pathway in Th17 regulation, we generated a TL1A-deficient mouse and found that TL1A−/− dendritic cells exhibited a reduced capacity in supporting Th17 differentiation and proliferation. Consistent with these data, TL1A−/− animals displayed decreased clinical severity in experimental autoimmune encephalomyelitis (EAE). Finally, we demonstrated that during EAE disease progression, TL1A was required for the optimal differentiation as well as effector function of Th17 cells. These observations thus establish an important role of the TL1A–DR3 pathway in promoting Th17 cell function and Th17-mediated autoimmune disease

    ELIXR: Towards a general purpose X-ray artificial intelligence system through alignment of large language models and radiology vision encoders

    Full text link
    Our approach, which we call Embeddings for Language/Image-aligned X-Rays, or ELIXR, leverages a language-aligned image encoder combined or grafted onto a fixed LLM, PaLM 2, to perform a broad range of tasks. We train this lightweight adapter architecture using images paired with corresponding free-text radiology reports from the MIMIC-CXR dataset. ELIXR achieved state-of-the-art performance on zero-shot chest X-ray (CXR) classification (mean AUC of 0.850 across 13 findings), data-efficient CXR classification (mean AUCs of 0.893 and 0.898 across five findings (atelectasis, cardiomegaly, consolidation, pleural effusion, and pulmonary edema) for 1% (~2,200 images) and 10% (~22,000 images) training data), and semantic search (0.76 normalized discounted cumulative gain (NDCG) across nineteen queries, including perfect retrieval on twelve of them). Compared to existing data-efficient methods including supervised contrastive learning (SupCon), ELIXR required two orders of magnitude less data to reach similar performance. ELIXR also showed promise on CXR vision-language tasks, demonstrating overall accuracies of 58.7% and 62.5% on visual question answering and report quality assurance tasks, respectively. These results suggest that ELIXR is a robust and versatile approach to CXR AI

    Dependency of NELF-E-SLUG-KAT2B epigenetic axis in breast cancer carcinogenesis.

    Get PDF
    Cancer cells undergo transcriptional reprogramming to drive tumor progression and metastasis. Using cancer cell lines and patient-derived tumor organoids, we demonstrate that loss of the negative elongation factor (NELF) complex inhibits breast cancer development through downregulating epithelial-mesenchymal transition (EMT) and stemness-associated genes. Quantitative multiplexed Rapid Immunoprecipitation Mass spectrometry of Endogenous proteins (qPLEX-RIME) further reveals a significant rewiring of NELF-E-associated chromatin partners as a function of EMT and a co-option of NELF-E with the key EMT transcription factor SLUG. Accordingly, loss of NELF-E leads to impaired SLUG binding on chromatin. Through integrative transcriptomic and genomic analyses, we identify the histone acetyltransferase, KAT2B, as a key functional target of NELF-E-SLUG. Genetic and pharmacological inactivation of KAT2B ameliorate the expression of EMT markers, phenocopying NELF ablation. Elevated expression of NELF-E and KAT2B is associated with poorer prognosis in breast cancer patients, highlighting the clinical relevance of our findings. Taken together, we uncover a crucial role of the NELF-E-SLUG-KAT2B epigenetic axis in breast cancer carcinogenesis

    Integrative analysis of multimodal mass spectrometry data in MZmine 3

    Get PDF
    3 Pág.We thank Christopher Jensen and Gauthier Boaglio for their contributions to the MZmine codebase. We thank Jianbo Zhang and Zachary Russ for their donations to MZmine development. The MZmine 3 logo was designed by the Bioinformatics & Research Computing group at the Whitehead Institute for Biomedical Research. T.P. is supported by Czech Science Foundation (GA CR) grant 21-11563M and by the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement 891397. Support for P.C.D. was from US NIH U19 AG063744, P50HD106463, 1U24DK133658 and BBSRC-NSF award 2152526. T.S. acknowledges funding by Deutsche Forschungsgemeinschaft (441958208). M. Wang acknowledges the US Department of Energy Joint Genome Institute ( https://ror.org/04xm1d337 , a DOE Office of Science User Facility) and is supported by the Office of Science of the US Department of Energy operated under subcontract No. 7601660. E.R. and H.H. thank Wen Jiang (HILICON AB) for providing the iHILIC Fusion(+) column for HILIC measurements. M.F., K.D. and S.B. are supported by Deutsche Forschungsgemeinschaft (BO 1910/20). L.-F.N. is supported by the Swiss National Science Foundation (project 189921). D.P. was supported through the Deutsche Forschungsgemeinschaft (German Research Foundation) through the CMFI Cluster of Excellence (EXC-2124 — 390838134 project-ID 1-03.006_0) and the Collaborative Research Center CellMap (TRR 261 - 398967434). J.-K.W. acknowledges the US National Science Foundation (MCB-1818132), the US Department of Agriculture, and the Chan Zuckerberg Initiative. MZmine developers have received support from the European COST Action CA19105 — Pan-European Network in Lipidomics and EpiLipidomics (EpiLipidNET). We acknowledge the support of the Google Summer of Code (GSoC) program, which has funded the development of several MZmine modules through student projects. We thank Adam Tenderholt for introducing MZmine to the GSoC program.Peer reviewe

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

    Get PDF
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at root s = 8 TeV. The data correspond to an integrated luminosity of 19.7 fb(-1). The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t (t) over bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 confidence level for the product of the production cross section and branching fraction sigma(gg -> X) B(X -> HH -> b (b) over barb (b) over bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with amass scale Lambda(R) = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV

    Measurement of the top quark mass using charged particles in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe
    corecore