68 research outputs found

    Molecular Electronic Coupling Controls Charge Recombination Kinetics in Organic Solar Cells of Low Bandgap Diketopyrrolopyrrole, Carbazole, and Thiophene Polymers

    Get PDF
    Low-bandgap diketopyrrolopyrrole- and carbazole-based polymer bulk-heterojunction, solar cells exhibit much faster charge carrier recombination kinetics than that encountered for less-recombining poly(3-hexylthiophene). Solar cells comprising these polymers exhibit energy losses caused by carrier recombination of approximately 100 mV, expressed as reduction in open-circuit voltage, and consequently photovoltaic conversion efficiency lowers in more than 20%. The analysis presented here unravels the origin of that energy loss by connecting the limiting mechanism governing recombination dynamics to the electronic coupling occurring at the donor polymer and acceptor fullerene interfaces. Previous approaches correlate carrier transport properties and recombination kinetics by means of Langevin-like mechanisms. However, neither carrier mobility nor polymer ionization energy helps understanding the variation of the recombination coefficient among the studied polymers In the framework of the charge transfer Marcus theory, it is proposed that recombination time scale is linked with charge transfer molecular mechanisms at,the polymer/fullerene interfaces. As expected for efficient organic solar cells, small electronic coupling existing between donor polymers and acceptor fullerene (V-if < 1 meV) and large reorganization energy (lambda approximate to 0.7 eV) are encountered. Differences in the electronic coupling among polymer/fullerene blends suffice to explain the slowest recombination exhibited by poly(3-hexylthiophene)-based solar, cells. Our approach reveals how to directly connect photovoltaic parameters. as open circuit voltage to molecular properties of blended materials.This work was partially supported by FP7 European Collaborative Project SUNFLOWER (FP7-ICT-2011-7, Contract No. 287594), Ministerio de Educacion y Ciencia (Spain), under Project HOPE CSD2007-00007 (Consolider-Ingenio 2010), and Generalitat Valenciana (Prometeo/2009/058 and ISIC/2012/008 Institute of Nanotechnologies for Clean Energies)

    Quenching dynamics in CdSe nanoparticles: surface-induced defects upon dilution

    Get PDF
    International audienceWe have analyzed the decays of the fluorescence of colloidal CdSe quantum dots (QDs) suspensions during dilution and titration by the ligands. A ligand shell made of a combination of trioctylphosphine (TOP), oleylamine (OA), and stearic acid (SA) stabilizes the as-synthesized QDs. The composition of the shell was analyzed and quantified using high resolution liquid state 1H nuclear magnetic resonance (NMR) spectroscopy. A quenching of the fluorescence of the QDs is observed upon removal of the ligands by diluting the stock solution of the QDs. The fluorescence is restored by the addition of TOP. We analyze the results by assuming a binomial distribution of quenchers among the QDs and predict a linear trend in the time-resolved fluorescence decays. We have used a nonparametric analysis to show that for our QDs, 3.0 0.1 quenching sites per QD on average are revealed by the removal of TOP. We moreover show that the quenching rates of the quenching sites add up. The decay per quenching site can be compared with the decay at saturation of the dilution effect. This provides a value of 2.88 0.02 for the number of quenchers per QD. We extract the quenching dynamics of one site. It appears to be a process with a distribution of rates that does not involve the ligands

    The three hundred project: thermodynamical properties, shocks and gas dynamics in simulated galaxy cluster filaments and their surroundings

    Full text link
    Using cosmological simulations of galaxy cluster regions from The Three Hundred project we study the nature of gas in filaments feeding massive clusters. By stacking the diffuse material of filaments throughout the cluster sample, we measure average gas properties such as density, temperature, pressure, entropy and Mach number and construct one-dimensional profiles for a sample of larger, radially-oriented filaments to determine their characteristic features as cosmological objects. Despite the similarity in velocity space between the gas and dark matter accretion patterns onto filaments and their central clusters, we confirm some differences, especially concerning the more ordered radial velocity dispersion of dark matter around the cluster and the larger accretion velocity of gas relative to dark matter in filaments. We also study the distribution of shocked gas around filaments and galaxy clusters, showing that the surrounding shocks allow an efficient internal transport of material, suggesting a laminar infall. The stacked temperature profile of filaments is typically colder towards the spine, in line with the cosmological rarefaction of matter. Therefore, filaments are able to isolate their inner regions, maintaining lower gas temperatures and entropy. Finally, we study the evolution of the gas density-temperature phase diagram of our stacked filament, showing that filamentary gas does not behave fully adiabatically through time but it is subject to shocks during its evolution, establishing a characteristic z = 0, entropy-enhanced distribution at intermediate distances from the spine of about 1 - 2 h1h^{-1} Mpc for a typical galaxy cluster in our sample.Comment: 16 pages, 13 figures. Accepted for publication in MNRA

    Thymostimulin versus placebo for palliative treatment of locally advanced or metastasised hepatocellular carcinoma: a phase III clinical trial.

    Get PDF
    BACKGROUND: Thymostimulin is a thymic peptide fraction with immune-mediated cytotoxicity against hepatocellular carcinoma (HCC) in vitro and palliative efficacy in advanced HCC in two independent phase II trials. The aim of this study was to assess the efficacy of thymostimulin in a phase III trial. METHODS: The study was designed as a prospective randomised, placebo-controlled, double-blind, multicenter clinical phase III trial. Between 10/2002 and 03/2005, 135 patients with locally advanced or metastasised HCC (Karnofsky &gt;or=60%/Child-Pugh &lt;or= 12) were randomised to receive thymostimulin 75 mg s.c. 5x/week or placebo stratified according to liver function. Primary endpoint was twelve-month survival, secondary endpoints overall survival (OS), time to progression (TTP), tumor response, safety and quality of life. A subgroup analysis according to liver function, KPS and tumor stage (Okuda, CLIP and BCLC) formed part of the protocol. RESULTS: Twelve-month survival was 28% [95%CI 17-41; treatment] and 32% [95%CI 19-44; control] with no significant differences in median OS (5.0 [95% CI 3.7-6.3] vs. 5.2 [95% CI 3.5-6.9] months; p = 0.87, HR = 1.04 [95% CI 0.7-1.6]) or TTP (5.3 [95%CI 2.0-8.6] vs. 2.9 [95%CI 2.6-3.1] months; p = 0.60, HR = 1.13 [95% CI 0.7-1.8]). Adjustment for liver function, Karnofsky status or tumor stage did not affect results. While quality of life was similar in both groups, fewer patients on thymostimulin suffered from accumulating ascites and renal failure. CONCLUSIONS: In our phase III trial, we found no evidence of any benefit to thymostimulin in the treatment of advanced HCC and there is therefore no justification for its use as single-agent treatment. The effect of thymostimulin on hepato-renal function requires further confirmation. TRIAL REGISTRATION: Current Controlled Trials ISRCTN64487365

    Evaluation of the potential of modified calcium carbonate as a carrier for unsaturated fatty acids in oxygen scavenging applications

    Get PDF
    Modified calcium carbonates (MCC) are inorganic mineral-based particles with a large surface area, which is enlarged by their porous internal structure consisting of hydroxyapatite and calcium carbonate crystal structures. Such materials have high potential for use as carriers for active substances such as oxygen scavenging agents. Oxygen scavengers are applied to packaging to preserve the quality of oxygen-sensitive products. This study investigated the potential of MCC as a novel carrier system for unsaturated fatty acids (UFAs), with the intention of developing an oxygen scavenger. Linoleic acid (LA) and oleic acid (OA) were loaded on MCC powder, and the loaded MCC particles were characterized and studied for their oxygen scavenging activity. For both LA and OA, amounts of 20 wt% loading on MCC were found to provide optimal surface area/volume ratios. Spreading UFAs over large surface areas of 31.6 and 49 m2 g-1 MCC enabled oxygen exposure and action on a multitude of molecular sites, resulting in oxygen scavenging rates of 12.2 ± 0.6 and 1.7 ± 0.2 mL O2 d-1 g-1, and maximum oxygen absorption capacities of >195.6 ± 13.5 and >165.0 ± 2.0 mL g-1, respectively. Oxygen scavenging activity decreased with increasing humidity (37-100% RH) and increased with rising temperatures (5-30 °C). Overall, highly porous MCC was concluded to be a suitable UFA carrier for oxygen scavenging applications in food packaging

    The three hundred project: thermodynamical properties, shocks and gas dynamics in simulated galaxy cluster filaments and their surroundings

    Get PDF
    Using cosmological simulations of galaxy cluster regions from THE THREE HUNDRED project we study the nature of gas in filaments feeding massive clusters. By stacking the diffuse material of filaments throughout the cluster sample, we measure average gas properties such as density, temperature, pressure, entropy and Mach number and construct one-dimensional profiles for a sample of larger, radially-oriented filaments to determine their characteristic features as cosmological objects. Despite the similarity in velocity space between the gas and dark matter accretion patterns onto filaments and their central clusters, we confirm some differences, especially concerning the more ordered radial velocity dispersion of dark matter around the cluster and the larger accretion velocity of gas relative to dark matter in filaments. We also study the distribution of shocked gas around filaments and galaxy clusters, showing that the surrounding shocks allow an efficient internal transport of material, suggesting a laminar infall. The stacked temperature profile of filaments is typically colder towards the spine, in line with the cosmological rarefaction of matter. Therefore, filaments are able to isolate their inner regions, maintaining lower gas temperatures and entropy. Finally, we study the evolution of the gas density-temperature phase diagram of our stacked filament, showing that filamentary gas does not behave fully adiabatically through time but it is subject to shocks during its evolution, establishing a characteristic z = 0, entropy-enhanced distribution at intermediate distances from the spine of about 1 − 2 h−1 Mpc for a typical galaxy cluster in our sample

    Illuminating hydrological processes at the soil-vegetation-atmosphere interface with water stable isotopes

    Get PDF
    Funded by DFG research project “From Catchments as Organised Systems to Models based on Functional Units” (FOR 1Peer reviewedPublisher PDFPublisher PD

    Development and synthetic applications of asymmetric copper-catalysed conjugate addition reactions

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore