
materials

Article

Evaluation of the Potential of Modified Calcium Carbonate as a
Carrier for Unsaturated Fatty Acids in Oxygen
Scavenging Applications

Bettina Röcker 1, Gabriel Mäder 1, Fabien Wilhelm Monnard 2, Magdalena Jancikova 1, Matthias Welker 2,
Joachim Schoelkopf 2 and Selçuk Yildirim 1,*

����������
�������

Citation: Röcker, B.; Mäder, G.;

Monnard, F.W.; Jancikova, M.; Welker,

M.; Schoelkopf, J.; Yildirim, S.

Evaluation of the Potential of

Modified Calcium Carbonate as a

Carrier for Unsaturated Fatty Acids

in Oxygen Scavenging Applications.

Materials 2021, 14, 5000. https://

doi.org/10.3390/ma14175000

Academic Editor:

Nikolaos Bouropoulos

Received: 6 July 2021

Accepted: 27 August 2021

Published: 1 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Food and Beverage Innovation, Department of Life Sciences and Facility Management,
Zurich University of Applied Sciences, Campus Reidbach, 8820 Wädenswil, Switzerland;
bettina.roecker@zhaw.ch (B.R.); gabriel.maeder@strombriefe.ch (G.M.); magdalena.jancikova@zhaw.ch (M.J.)

2 Omya International AG, Baslerstrasse, 4665 Oftringen, Switzerland; fabien.monnard@omya.com (F.W.M.);
matthias.welker@omya.com (M.W.); joachim.schoelkopf@omya.com (J.S.)

* Correspondence: selcuk.yildirim@zhaw.ch; Tel.: +41-58-934-56-31

Abstract: Modified calcium carbonates (MCC) are inorganic mineral-based particles with a large
surface area, which is enlarged by their porous internal structure consisting of hydroxyapatite and
calcium carbonate crystal structures. Such materials have high potential for use as carriers for active
substances such as oxygen scavenging agents. Oxygen scavengers are applied to packaging to
preserve the quality of oxygen-sensitive products. This study investigated the potential of MCC as
a novel carrier system for unsaturated fatty acids (UFAs), with the intention of developing an oxygen
scavenger. Linoleic acid (LA) and oleic acid (OA) were loaded on MCC powder, and the loaded
MCC particles were characterized and studied for their oxygen scavenging activity. For both LA
and OA, amounts of 20 wt% loading on MCC were found to provide optimal surface area/volume
ratios. Spreading UFAs over large surface areas of 31.6 and 49 m2 g−1 MCC enabled oxygen exposure
and action on a multitude of molecular sites, resulting in oxygen scavenging rates of 12.2 ± 0.6
and 1.7 ± 0.2 mL O2 d−1 g−1, and maximum oxygen absorption capacities of >195.6 ± 13.5 and
>165.0 ± 2.0 mL g−1, respectively. Oxygen scavenging activity decreased with increasing humidity
(37–100% RH) and increased with rising temperatures (5–30 ◦C). Overall, highly porous MCC was
concluded to be a suitable UFA carrier for oxygen scavenging applications in food packaging.

Keywords: active packaging; oxygen scavenger; unsaturated fatty acids; linoleic acid; oleic acid;
modified calcium carbonate

1. Introduction

Oxygen can negatively affect the quality of packaged food, as it can promote oxidative
or microbial spoilage of the food product. This can lead to color change, loss of nutritional
value or sensorial alteration of the food due to the formation of by-products, which can
produce off flavours and undesired odours [1,2]. To overcome this, oxygen sensitive prod-
ucts are mainly packed by flushing the headspace with nitrogen or applying modified
atmosphere, replacing the air in the headspace with a defined gas mixture without oxy-
gen. However, it is not possible to fully remove the oxygen, due to inefficiencies during
the flushing or evacuation process. Additionally, oxygen may also diffuse through the
packaging material while it is being stored, which may still result in a decrease in food
quality. Oxygen scavengers, however, have the potential to remove the residual oxygen
from a package, as well as any oxygen that diffuses through the packaging material at
a later time [3,4]. Although several oxygen scavengers have been developed and charac-
terized [4,5], most commercially available oxygen scavengers are iron-based sachets [6].
Sachet-based applications, however, have several drawbacks. For instance, the sachets
could accidentally rupture, leading to involuntary consumption. In addition, they require
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an additional packaging step, and they lack consumer acceptance [7,8], especially when
they are used with certain foods like meat products [7,9,10]. Thus, active ingredients should
be preferably integrated into the packaging materials. Some of the oxygen scavenging
agents, such as iron [11–13] or palladium [14–16], have been successfully incorporated into
the packaging films by using extrusion, impregnation, or vacuum coating technologies.
However, integrating other scavenging agents (e.g., gallic acid, ascorbic acid, enzymes, and
unsaturated fatty acids) remains challenging [17].

With respect to matrix integration, highly porous particles are increasingly being
used as carriers for active ingredients [18,19] for pharmaceutical and food applications,
to increase solubility of hydrophobic substances in water [20] or to control the release of
active ingredients [21–23]. Omya International AG has developed a range of modified
calcium carbonates (MCC), small inorganic composite particles (5–15 µm) of hydroxyapatite
and calcium carbonate crystals with a hydrophilic surface and high porosity and surface
area [24]. This development is based on exposing natural ground calcium carbonate
to acids under specific conditions. Their high surface area, which is enlarged by their
porous internal structure, makes them potential candidates for use as carriers for oxygen
scavenging agents. Thereby, the extended surface area of MCC is ideal for higher oxidation
kinetics [25]. In a recent study, MCC has been shown to have high potential to dope
liquid agents such as essential oils [23] and for integration into the packaging as a coating.
Therefore, MCC is believed to have a high potential for use as a carrier system for oxygen
scavenging agents being integrated into packaging.

Unsaturated fatty acids (UFAs) are commonly used as plasticizers for the production
of packaging materials [26–28], but they are also known for their ability to scavenge
oxygen [29–31]. Thereby, the scavenging mechanism relies on autoxidation reactions
with atmospheric triplet oxygen (3O2) and, in contrast to some other scavenging systems,
it does not require the presence of water for propagation of the reaction [2,29]. Thus,
UFA-based oxygen scavenging systems have great potential for use as oxygen scavengers,
especially for dry products [32]. In the present study, the potential of MCC was therefore
investigated as a novel carrier system for UFAs. In this context, MCC has been utilised for
oxygen scavenging purposes for the first time. Oleic acid (OA, octadecenoic acid, 18:1) and
linoleic acid (LA, octadecadienoic acid, 18:2) were loaded on the MCC powder and their
oxygen scavenging potential was evaluated. In particular, the effects of the UFA loading
amount, temperature, and humidity on the oxygen scavenging activity were investigated.
In addition, the oxygen scavenging capacity was determined and the storage stability of
the MCC loaded with oleic and linoleic acid was evaluated.

2. Materials and Methods
2.1. Loading of MCC with UFAs

Modified calcium carbonates (MCC) were supplied by Omya International AG (Oftrin-
gen, Switzerland) as a powder of median particle size (Malvern Mastersizer 3000, Almelo,
The Netherlands; dry measurements, d50%) of 5.0 µm, top cut (d98%) of 13 µm and spe-
cific surface area [33] of 103 m2 g−1. Oleic acid (OA, 364525, technical grade 90%) and
linoleic acid (LA, 62240, technical 60–74%, GC) were supplied by Sigma-Aldrich, Buchs
SG, Switzerland.

MCC was loaded with 9.1, 20, and 41.2 wt% oleic acid and 10, 20, and 30 wt% linoleic
acid. For loading on the MCC, the unsaturated fatty acids (UFAs) were added dropwise
to the MCC powder under constant mechanical stirring (300 rpm) using a lab stirrer
(Somakon MP-GL, Somakon Verfahrenstechnik UG, Germany; vessel volume: 2.5 L) at
room temperature. The loaded MCC was stirred for 10 additional minutes after adding
the whole amount of the respective UFA. The loaded MCC was stored under nitrogen at
21 ± 1 ◦C in the dark until use.
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2.2. Characterisation of MCC Loaded with UFAs
2.2.1. Mercury Intrusion Porosimetry (MIP)

The specific pore volume was measured using a mercury intrusion porosimetry mea-
surement using a Micromeritics Autopore V 9620 mercury porosimeter with a maximum
applied pressure of mercury 414 MPa (60,000 psi), equivalent to a Laplace throat diameter
of 0.004 µm. The equilibration time used at each pressure step was 20 s. The sample
material was sealed in a 5 mL chamber powder penetrometer for analysis. The data were
corrected for mercury compression, penetrometer expansion, and sample material compres-
sion according to the methodology presented in the study of Gane [34] using the software
“Pore-Cor” (pore-level properties correlator).

2.2.2. Brunauer–Emmett–Teller (BET) Analysis of the Specific Surface Area

The specific surface area was determined using the Brunauer–Emmett–Teller (BET)
standard method (ISO 9277–2010 [33]). Nitrogen adsorption was recorded at 77.35 K using
a Micromeritics TriStar II Plus surface area analyser (ATS Scientific Inc., Burlington, ON,
Canada). The surface area was specified in m2 g−1 by the MicroActive software TriStar
II 3020 Version 3.02 according to the BET surface area plots shown in Figure A1 in the
Appendix A.

2.2.3. Field Emission Scanning Electron Microscopy (SEM)

MCC powder was immobilised on C-Tape and sputtered with a gold layer of 8 nm
(Safematic CCU-010 HV, Zizers, Switzerland). Samples were analysed with field-emission
scanning electron microscope (FESEM, Zeiss Sigma VP, Oberkochen, Germany; acceleration
voltage: 2 kV, aperture: 30 µm, distance: 5 mm, detector: secondary electron detector SE2).

2.3. Sample Preparation for Evaluation of Oxygen Scavenging Activity

Sample preparation was performed in a clove box (CaptairPyramid, Erlab, Val-de-
Reuil, France) under exclusion of oxygen (about 0.1 vol.-%). Therefore, 1.000 ± 0.010 g of
MCC loaded with UFA or pure MCC (negative control) were filled in heat sealable tea bags
(55 mm × 80 mm, Special Tea Company®, Orlando, FL, USA) and sealed with a hand heat
impulse sealer (400 HC, TRL EMC Ltd., Skelmersdale, UK). Pure oleic and linoleic acid
were also tested, in the same amount as what was loaded on MCC. For that purpose, the
pure UFA were placed in a glass petri dish lid (9.5 cm inner diameter, 1 cm height). Sample
preparation was performed just prior to packaging.

2.4. Setting of Controlled in-Package Humidity

Control of the relative humidity (RH) in the packaging headspace was accomplished
using different saturated salt solutions resulting in RH’s of 37, 47, 67, 77, 83, 87, 100% [35–37].
Magnesium chloride (anhydrous > 98.0%), potassium carbonate (BioXtra, ≥99.0%), sodium
hydrogen sulphate (technical grade), sodium chloride (BioXtra, ≥99.5%) ammonium sul-
phate (BioUltra, ≥99.0%), sodium sulphate (anhydrous, ≥99.0%), and demineralized water,
were applied. All salts were supplied by Sigma-Aldrich, Buchs SG, Switzerland. Each salt
solution was prepared in the same way by dissolving the salt in demineralized water via
strong shaking and placing in an ultrasonic bath (USC1200D, VWR International, Leuven,
Belgium) for 10 min at 25 ◦C on power-level 9. Solutions of salts with exothermic enthalpy
were periodically placed in an ice water bath to accelerate the solution process. To ensure
saturation of the solutions, salt was added in excess. All solutions were degassed in the
ultrasonic bath for 5 min, degassed with nitrogen, and stored at 21 ◦C in the dark. To
inhibit microbial growth in the pure demineralized water, silver nitrate (Silver nitrate
solution, 0.1 N, Merck KGaA, Darmstadt, Germany) was added in a concentration of
0.2 mmol L−1. For packaging, 20 mL of each solution was placed in a glass petri dish lid
(9.5 cm inner diameter, 1 cm height). To ensure that the solutions remained saturated
during the measurements, approximately 1 g of the corresponding salts was added to
the solution.
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2.5. Packaging Process and Measurement of Oxygen Scavenging Activity

High barrier packaging trays (PS-EVOH-PE with peel, 0.5 mm, 204 mm× 147 mm,
8 and 14 mm height, Stäger & Co AG, Muri, Switzerland) were used. For packages
containing tea bags only, trays which were 8 mm in height were used (volume 250 mL).
For the tests under controlled RH and pure UFAs, the petri dish containing the water
or salt solution was placed in trays which were 14 mm in height and glass beads were
added to ensure a uniform headspace volume of 250 mL for all experiments. Tea bags
filled with MCC or loaded MCC were fixed on the inner side of the lidding film (Ecoweb
M/Pap 57 AF, PET/PE/EVOH/PE peel, Südpack Verpackungen, Ochsenhausen, Germany;
O2 transmission rate ≤ 2.5 cm3 m−2 d−1 bar−1 at 23 ◦C and 50% relative humidity) with
an adhesive tape (tesafix® 4934, Tesa, Offenburg, Germany). To evaluate the oxygen
scavenging activity (OSA), an oxygen sensitive sensor spot (PST3 for normal atmosphere
(NA) and PST6 for modified atmosphere (MAP), 3 mm diameter, PreSens, Regensburg,
Germany) was glued to the inner side of the lidding film prior to sealing. Figure 1 shows
an example package setting.
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Figure 1. Example package setting for oxygen scavenging measurements. High barrier tray contain-
ing 1 g modified calcium carbonate (MCC) powder loaded with UFAs in a sealable teabag fixed on
the lidding film, a petri dish filled with a saturated salt solution, glass beads to adjust the headspace
volume and an oxygen sensitive sensor spot (red).

The NA packages were sealed at 125 ◦C using a tray sealer (T200, Multivac, Hünenberg,
Switzerland). For MAP, a vacuum of 50 mbar was applied, the tray was flushed with a gas
mixture (2 vol.-% O2 and 98 vol.-% N2) until 900 mbar was achieved and then sealed
at 125 ◦C. The OSA measurements were performed by a non-destructive measurement
method using fibre optic optodes Fibox 4 trace (PreSens, Regensburg, Germany). The
measurements were carried out in a climate chamber (KBF 720, Binder GmbH, Tuttlingen,
Germany) at 21 ± 1 ◦C and 30 ± 1 ◦C at 50% RH and in a cold-storage room (Kolb Kälte AG,
Rüthi, Switzerland) at 5 ± 1 ◦C. To simplify, oxygen scavenging rates (OSR) were calculated
by determining the slope of the initial linear part of the progression of oxygen concentration
in the package. All experiments were carried out in triplicate or quadruplicate.
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3. Results

Surface-modified calcium carbonate (MCC) powder was loaded with unsaturated fatty
acids (UFAs), namely oleic acid (OA) and linoleic acid (LA), with the intention to develop
novel oxygen scavenging applications. To evaluate the potential of MCC as a carrier for
UFAs, structural properties of MCC loaded with UFAs were analysed and their oxygen
scavenging performance was evaluated under varying conditions.

3.1. Structural Properties of MCC Loaded with UFAs

MCC and MCC loaded with LA and OA were characterized with respect to their intra
particle pore volume (Mercury intrusion porosimetry) and specific surface area (Brunauer–
Emmett–Teller (BET) analysis). BET surface area plots are presented in Figure A1 in
the Appendix A and the specific surface areas are listed in Table 1. The results clearly
demonstrate that the void space of the unloaded MCC was partially filled with UFAs. The
increase in the loading amount of UFAs (from 9.1–41.5 wt% for OA and 10–30 wt% for LA)
resulted in a decrease in the intra particle specific pore volume (from 0.802–0.163 cm−3 g−1

for OA and from 0.766–0.352 cm−3 g−1 for LA) as well as in the specific surface area (from
72–6.6 m2 g−1 for OA and from 60–8.9 m2 g−1 for LA). The results also show that even
with the highest loading amounts of UFA, the pores of the MCCs have not been fully filled.
This was also confirmed by the scanning electron microscopy (SEM) images of the MCC
(Figure 2a) and MCC loaded with UFA (Figure 2b,c). As can be seen, the porous structure
of the MCC loaded with 20 wt% LA (Figure 2b) or 20 wt% of OA (Figure 2c) was retained
and the pores were not fully loaded.

Table 1. Intra particle pore volume and specific surface area of loaded and unloaded MCC. Mean
values (n = 2).

Sample

Total Intra Particle Intruded
Specific Pore Volume

(0.004–0.34 µm) cm−3 g−1
Specific Surface Area m2 g−1

1.019 103
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MCC + linoleic acid   

10 wt% loading 0.766 60 

20 wt% loading 0.527 31.6 

30 wt% loading 0.352  8.9 

MCC + oleic acid
9.1 wt% loading 0.802 72
20 wt% loading 0.648 49

41.5 wt% loading 0.163 6.6

MCC + linoleic acid
10 wt% loading 0.766 60
20 wt% loading 0.527 31.6
30 wt% loading 0.352 8.9
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(a) unloaded MCC, (b) MCC loaded with linoleic acid (20 wt%) and (c) MCC loaded with oleic acid (20 wt%).

3.2. Oxygen Scavenging Activity

The oxygen scavenging activity of MCC loaded with UFAs was evaluated by moni-
toring the decrease in the oxygen concentration in the headspace of the high barrier trays
(containing loaded MCC) over time. An initial oxygen concentration of 2 vol.-% was intro-
duced into the package to imitate the residual amount of oxygen remaining in packages at
industrial production lines. The effect of the loading amount of UFAs, as well as the effects
of temperature and relative humidity on the oxygen scavenging activity of the loaded
MCCs were studied. Additionally, maximum oxygen absorption capacity and storage
stability of the loaded MCC was evaluated.

3.2.1. Effect of Loading Amount on the Oxygen Scavenging Activity of MCC Loaded
with UFAs

In order to find the optimal loading amount of oleic and linoleic acid, three different
amounts of each UFA were loaded on MCC and the oxygen scavenging activity (OSA) of
the loaded MCC was evaluated. For comparison, the OSA of pure oleic and linoleic acid,
was measured under the same conditions. As shown in Figure 3, with a loading amount of
20 wt% oleic acid (OA), the 2 vol.-% initial headspace oxygen was removed within 20 days
resulting in an oxygen scavenging rate of (OSR) of 1.7 ± 0.2 mL O2 d−1 gOA

−1. For both
higher (41.2 wt% OA) and lower (9.1 wt% OA) loading amounts, OSRs were remarkably
lower with 0.3 ± 0.0 and 0.2 ± 0.1 mL O2 d−1 gOA

−1, respectively. Whereas with the
MCC loaded with the 41.2 wt% OA 50 days were required to remove all the headspace
oxygen, with the 9.1 wt% loading, and it was not possible to remove the 2 vol.-% oxygen
within the six month-test period. In order to compare the oxygen scavenging activity of the
loaded MCC with the pure OA, 0.2 g pure OA (referring to the OA amount in the 20 wt%
sample) was packed and stored under the same conditions. As can be seen in Figure 3,
the evolution of oxygen concentration in the package with pure OA is very similar to the
empty packages, indicating that the pure OA alone was not able to scavenge any significant
amount of oxygen within the test period.

When MCC was loaded with linoleic acid (LA), OSA was remarkably higher for
all loading amounts (10, 20, and 30 wt% LA) compared to that of OA. As shown in
Figure 4, with a loading amount of 10 wt% LA, the 2 vol.-% initial headspace oxygen
was removed within eight days with an OSR of 7.8 ± 0.4 mL O2 d−1 gLA

−1. When the
loading amount of LA was increased to 20 wt%, time to scavenge all oxygen in the package
decreased to two days resulting in an OSR of 12.2 ± 0.6 mL O2 d−1 gLA

−1. Further increase
of the loading amount to 30 wt% resulted in a decrease in oxygen scavenging activity
(6.5 ± 0.6 mL O2 d−1 gLA

−1) and the time to remove all oxygen in the headspace increased
to 2.75 days. In contrast to pure OA (Figure 4), pure LA showed oxygen scavenging activity.
By applying 0.2 g of pure LA (referring to the LA amount in the 20 wt% sample), the
2 vol.-% initial headspace oxygen was removed within 43 days resulting in an OSR of
1.4 ± 0.1 mL O2 d−1 gLA

−1.
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modified atmosphere (MAP, 2 vol.-% O2, rest N2; headspace 250 mL) and stored at 21 ◦C. Mean
values and standard deviation (n = 4).
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Figure 4. Oxygen concentration in packages containing 1 g modified calcium carbonate (MCC)
loaded with 10, 20, and 30 wt% linoleic acid, 0.2 g pure linoleic acid and empty package. Packed
under modified atmosphere (MAP, 2 vol.-% O2, rest N2; headspace 250 mL) and stored at 21 ◦C.
Mean values and standard deviation (n = 4).
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3.2.2. Effect of Temperature on the Oxygen Scavenging Activity of MCC Loaded
with UFAs

To examine the effect of temperature on the oxygen scavenging activity of loaded
MCC, MCC was loaded with 20 wt% oleic acid and linoleic acid, and their oxygen scav-
enging activities were studied at 5, 21, and 30 ◦C. The relative humidity in the package
was about 50% RH. Figures 5 and 6 clearly show that temperature has a strong impact
on the oxygen scavenging activity of MCC loaded with UFAs. When MCC loaded with
OA were stored at 30 ◦C, the initiation phase of the oxidation, where the oxygen concen-
tration did not decrease significantly, was only two days. Afterwards, in the propagation
phase, oxygen concentration started to decrease and reached <0.01 vol.-% between 16
and 17 days, resulting in an OSR of 2.1 ± 0.0 mL O2 d−1 gOA

−1 (determined between
day 3 and 15). Decrease in temperature to 21 ◦C increased the initiation phase to six days.
Afterwards oxygen concentration decreased to 0.42 vol.-% within 28 days with a lower OSR
of 1.0 ± 0.0 mL O2 d−1 gOA

−1 (determined between day 6 and 28). When the temperature
was further decreased to 5 ◦C, the initiation phase was further extended to more than
28 days and no significant decrease in the oxygen concentration was observed during
this period.
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Figure 5. Oxygen concentration in packages containing 1 g modified calcium carbonate (MCC)
loaded with 20 wt% oleic acid stored at 5, 21, and 30 ◦C, and ~50% RH inside the package and of
empty package settings stored under the same conditions. Packed under modified atmosphere (MAP,
2 vol.-% O2, rest N2; headspace 250 mL). Mean values and standard deviation (n = 3).

When MCC loaded with LA was stored at 30 ◦C, oxygen concentration started to
decrease immediately and reached <0.01 vol.-% after two days, resulting in an OSR of
16.6 ± 0.1 mL O2 d−1 gLA

−1 (Figure 6). Decrease in temperature to 21 ◦C reduced the OSR
to 8.2 ± 0.2 mL O2 d−1 gLA

−1 and all the oxygen was scavenged within 4.5 days. At both
conditions, no clear initiation phase was observed. Conversely, at 5 ◦C, an initiation phase
was observed to last five days. Afterwards, oxygen concentration decreased to <0.01 vol.-%
after 21 days resulting in an OSR of 2.1 ± 0.2 mL O2 d−1 gLA

−1.



Materials 2021, 14, 5000 9 of 19

Materials 2021, 14, x FOR PEER REVIEW 10 of 22 
 

 

 
Figure 6. Oxygen concentration in packages containing 1 g modified calcium carbonate (MCC) loaded with 20 wt% linoleic 
acid stored at 5, 21, and 30 °C, and ~50% RH in the package and of empty packages stored under the same conditions. 
Packed under modified atmosphere (MAP, 2 vol.-% O2, rest N2; headspace 250 mL). Mean values and standard deviation 
(n = 3). 

When MCC loaded with LA was stored at 30 °C, oxygen concentration started to 
decrease immediately and reached <0.01 vol.-% after two days, resulting in an OSR of 16.6 
± 0.1 mL O2 d−1 gLA−1 (Figure 6). Decrease in temperature to 21 °C reduced the OSR to 8.2 ± 
0.2 mL O2 d−1 gLA−1 and all the oxygen was scavenged within 4.5 days. At both conditions, 
no clear initiation phase was observed. Conversely, at 5 °C, an initiation phase was ob-
served to last five days. Afterwards, oxygen concentration decreased to <0.01 vol.-% after 
21 days resulting in an OSR of 2.1 ± 0.2 mL O2 d−1 gLA−1. 

3.2.3. Effect of Relative Humidity on the Oxygen Scavenging Activity of MCC Loaded 
with UFAs 

Oleic acid and linoleic acid loaded MCC was packed under various relative humidi-
ties inside the packages, ranging from 37–100% RH and their oxygen scavenging activity 
was evaluated. Figure 7 shows the effect of relative humidity on the oxygen scavenging 
activity (OSA) of OA loaded MCC. As can be seen in Figure 7, relative humidity negatively 
affects the oxygen scavenging activity of the loaded MCC. Under relatively dry conditions 
(37 and 47% RH), an initiation phase of about six days was observed. Afterwards, an ox-
ygen scavenging rate of 1.1 ± 0.0 mL O2 d−1 gOA−1 at both 37 and 47% RH was observed. At 
67% RH, the initial phase was prolonged to 10 days, and the OSR was decreased to 0.6 ± 
0.0 mL O2 d−1 gOA−1. At higher relative humidities, the end of the initial phase could not be 
recognized during the measurement time of 28 days. At 87 and 100% RH, no OSA was 
observed. In the packages with 83 and 87% RH, the oxygen concentration remained rela-
tively constant, while in the packages with 100% RH it increased from an initial value of 

Figure 6. Oxygen concentration in packages containing 1 g modified calcium carbonate (MCC)
loaded with 20 wt% linoleic acid stored at 5, 21, and 30 ◦C, and ~50% RH in the package and of empty
packages stored under the same conditions. Packed under modified atmosphere (MAP, 2 vol.-% O2,
rest N2; headspace 250 mL). Mean values and standard deviation (n = 3).

3.2.3. Effect of Relative Humidity on the Oxygen Scavenging Activity of MCC Loaded
with UFAs

Oleic acid and linoleic acid loaded MCC was packed under various relative humidities
inside the packages, ranging from 37–100% RH and their oxygen scavenging activity was
evaluated. Figure 7 shows the effect of relative humidity on the oxygen scavenging activity
(OSA) of OA loaded MCC. As can be seen in Figure 7, relative humidity negatively affects
the oxygen scavenging activity of the loaded MCC. Under relatively dry conditions (37
and 47% RH), an initiation phase of about six days was observed. Afterwards, an oxygen
scavenging rate of 1.1 ± 0.0 mL O2 d−1 gOA

−1 at both 37 and 47% RH was observed.
At 67% RH, the initial phase was prolonged to 10 days, and the OSR was decreased to
0.6 ± 0.0 mL O2 d−1 gOA

−1. At higher relative humidities, the end of the initial phase could
not be recognized during the measurement time of 28 days. At 87 and 100% RH, no OSA
was observed. In the packages with 83 and 87% RH, the oxygen concentration remained
relatively constant, while in the packages with 100% RH it increased from an initial value
of 2.1–3.3 vol.-% within 28 days. This can be attributed to the oxygen ingress from the
environment as shown in Figure A2 in the Appendix A. Packaging materials (tray and
lidding film) used in this study contained ethylene vinyl alcohol (EVOH) as an oxygen
barrier. At high relative humidity, the permeability of EVOH for oxygen increases [38].
In empty packages with humidities from 37–87% RH, only a slight increase in oxygen
concentration of 0.3 ± 0.1 vol.-% was detected within the 28 days, while under 100% RH
an oxygen ingress of 0.7 ± 0.2 vol.-% was observed (Figure A2).

A similar effect of relative humidity on the oxygen scavenging activities, i.e., decrease
in the oxygen scavenging activity accompanied by an increase in relative humidity was
observed for the linoleic acid loaded MCC (Figure 8). LA loaded MCC, however, could
successfully scavenge all the oxygen in the headspace within 12 days, with 4.25 days being
the fastest at 37% RH, and 12 days being required at 100% RH. With regard to the OSA of
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LA loaded MCC at 100% RH, shown in Figure 8, an oxygen ingress of 0.5 vol.-% has to be
considered for day 12, as shown in Figure A2, while for lower RHs this ingress is negligible.
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Figure 8. Oxygen concentration in packages containing 1 g modified calcium carbonate (MCC)
loaded with 20 wt% linoleic acid stored at 21 ◦C, and 37–100% RH in the package. Packed under
modified atmosphere (MAP, 2 vol.-% O2, rest N2; headspace 250 mL). Mean values and standard
deviation (n = 3).

3.3. Oxygen Absorption Capacity of MCC Loaded with UFAs

To determine the maximum oxygen absorption capacity of the MCC loaded with
oleic and linoleic acid, they were packed at normal atmosphere (20.9 vol.-% O2) and
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oxygen concentration was monitored until depletion. As shown in Figure 9, maximum
oxygen absorption capacity of MCC with UFAs was determined after six months as
>195.6 ± 13.5 mL gLA

−1 and >153.8 ± 4.7 mL gOA
−1. For the pure LA, oxygen absorption

capacity was >161.6 ± 3.4 mL gLA
−1. The maximum absorption capacities are probably

slightly higher than the given values due to the oxygen ingress into the packages during
the storage time. However, the oxygen ingress at the experimental conditions (21 ◦C and
50% RH) is expected to be very low and below the standard deviations of the maximum
oxygen absorption capacities.
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Figure 9. Oxygen absorption capacity of oleic and linoleic acid measured in packages containing 1 g
modified calcium carbonate (MCC) loaded with 20 wt% oleic acid and linoleic acid, and 0.2 g pure
linoleic acid. Packed under normal atmosphere (NA; headspace 250 mL), ~50% RH in the package
and stored at 21 ◦C. Mean values and standard deviation (n = 4).

3.4. Storage Stability of MCC Loaded with UFAs

In order to evaluate how long the loaded MCC can be stored, MCC loaded with
UFAs was stored under nitrogen in the dark at 21 ◦C, as described in Section 2.1, and
their oxygen scavenging activity (OSA) was evaluated after one, three, and six months of
storage. As shown in Figure 10, OSA of MCC loaded with OA declined during storage
and the time required to remove the 2 vol.-% initial oxygen increased with increasing
storage time from 20 to 28, 35, and 69 days after one, three, and six months, respectively. As
depicted in Figure 10, the reduced activity is due to the prolongation of the initiation phase.
The longer the storage time was the longer the initiation time was. Contrastingly, the
average OSR (linear part of the slope) remained relatively constant with 1.7 ± 0.2, 1.7 ± 0.1,
1.9 ± 0.6, and 1.2 ± 0.2 mL O2 d−1 gOA

−1 at day zero and one, three, and six months of
storage, respectively.

MCC loaded with LA showed a similar trend as OA loaded MCC, although it ap-
pears that the MCC loaded with LA is more stable in the first months (Figure 11). OSR
also remained relatively stable within this timespan with 12.2 ± 0.6, 15.4 ± 0.7, and
11.1 ± 0.6 mL O2 d−1 gLA

−1 at day zero and after one and three months of storage, re-
spectively. After six months of storage, a clear decrease in oxygen scavenging activity
was observed.
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Figure 10. Oxygen scavenging concentration of modified calcium carbonate (MCC) loaded with
20 wt% oleic acid packed under modified atmosphere (MAP, 2 vol.-% O2, rest N2; headspace 250 mL),
~50% RH in the package and stored at 21 ◦C. Freshly produced oleic acid loaded MCC and same
batch after one, three, and six months of storage at 21 ◦C under nitrogen and in the dark. Mean
values and standard deviation (n = 4).
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at the double bonds of the fatty acid chain and can be divided into three phases: initiation, 
propagation, and termination. Thereby, both the duration of the initiation phase as well 
as the reaction rate in the propagation phase are dependent on the number of double 
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Figure 11. Oxygen scavenging concentration of modified calcium carbonate (MCC) loaded with
20 wt% linoleic acid packed under modified atmosphere (MAP, 2 vol.-% O2, rest N2; headspace
250 mL), ~50% RH in the package and stored at 21 ◦C. Freshly produced linoleic acid loaded MCC
and same batch after one, three, and six months of storage at 21 ◦C under nitrogen and in the dark.
Mean values and standard deviation (n = 4).
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4. Discussion

So far, modified calcium carbonate (MCC) has been used as a carrier for release
applications of pharmaceuticals [21,22]. More recently, MCC was uniquely investigated
for the development of antimicrobial packaging demonstrating a controlled release of
antimicrobial agents [23]. In the present study, the potential of MCC powder as carrier for
unsaturated fatty acids (UFAs) to be used as oxygen scavengers has been shown. MCC
was loaded with oleic acid (OA) and linoleic acid (LA), and oxygen scavenging activity
(OSA) of the loaded MCC was evaluated under various conditions.

Theoretically, oxygen uptake of fatty acids can follow three different types of reac-
tion mechanisms namely β-oxidation, photosensitized oxidation, and autoxidation [2,39].
Within this study, it is our understanding that only autoxidation of oxygen takes place
according to the reaction conditions and experimental setup. β-oxidation takes place in the
presence of enzymes and is described in the fatty acid metabolism only. Photosensitized
oxidation can also be excluded due to the lack of additional photosensitizes in the pack-
age and the experimental setup in the dark (package was stored in a climate chamber or
fridge). Autoxidation of UFAs is described as a radical chain mechanism taking place at
the double bonds of the fatty acid chain and can be divided into three phases: initiation,
propagation, and termination. Thereby, both the duration of the initiation phase as well as
the reaction rate in the propagation phase are dependent on the number of double bonds
of the fatty acid chains [40,41]. Consequently, among all conditions tested (Section 3.2,
Oxygen scavenging activity), different oxygen scavenging activities were observed for the
applied fatty acids OA and LA, due to their given chemical structure. To initiate oxygen
uptake, energy is required to remove hydrogen atoms adjacent to the double bond(s) [42].
Thereby, hydrogen atoms, which are located in between two double bonds, need lower
energies for extraction. For this reason, the OSA of MCC loaded with LA, which has two
double bonds (18:2), was remarkably higher compared to that of OA, which has only one
double bond (18:1) and therefore a higher energy requirement for hydrogen extraction
from the molecule.

4.1. Effect of Loading Amount on the Oxygen Scavenging Activity of MCC Loaded with UFAs

MCC, the carrier material used in the present study, consists of partial recrystallized
calcium carbonate containing variable layers of lamellae of calcium phosphate (hydrox-
yapatite) on the surface of the particles providing a remarkably high specific surface area
of 103 m2 g−1, as visible on SEM images in Figure 2. In order to find the optimal loading
amount of linoleic acid (LA) and oleic acid (OA) for oxygen scavenging, three different
amounts of each UFA were loaded on MCC. As expected, an increase in the percent loading
amount of both LA and OA led to increased filling of the available void space in the porous
MCC. This was analytically confirmed by a reduction in intra particle specific pore volume
and specific surface area, as shown in Table 1. However, as visible on SEM images, recorded
from unloaded and UFA loaded MCC (Figure 2), the porous structure could be retained for
all loadings as the pores were not fully filled.

With respect to oxygen scavenging activity (OSA) for both OA (Figure 3) and LA
(Figure 4), a loading amount of 20 wt% was found to be the optimum, resulting in the
highest oxygen scavenging rates (OSR) compared to the samples with higher and lower
loadings of the respective UFA. Although more void space as well as a larger surface area
was available at lower loadings of OA and LA (Table 1), the resulting OSA of the 20 wt%
loadings indicate that with a 20 wt% UFA loading, where about half of the particle void
spaces are filled, an optimal surface area/volume ratio is provided. In contrast, at the
highest loadings, the OSA of both UFAs remarkably decreased, reflected by both strongly
reduced surface area as well as pore volume (Table 1). It is therefore assumed that at
loadings of 20 wt% and below, the UFAs are physically adsorbed on the MCC surface in the
form of monolayers. Such monolayer arrangements are reported to build two-dimensional
arrays of fatty acids at the interface between the substrate and the environment [43] which
means in our case that the fatty acid chains are directly accessible for oxygen scavenging
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reaction at loadings of 20 wt% and below whereas the accessibility of the fatty acid chains
is reduced at higher loadings.

Interestingly, in our study no oxygen scavenging activity was observed when pure
OA was packed in the referring amount of the 20 wt% OA loading and stored under the
same conditions. It is therefore assumed that the contact surface between oxygen and
the 0.2 g pure liquid OA (~1 cm2) was insufficient to initiate autoxidation of OA. The
observed increase in oxygen concentration in the package with pure OA can be attributed
to the oxygen diffusion into the package, as depicted in Figure 3 (empty package). In
packages containing pure LA, an oxygen uptake was observed, however, with an 8.7 times
lower scavenging rate compared to that of MCC loaded LA in the referring amount
(Figure 4). This difference is probably due to the low surface area (~1 cm2) of the 0.2 g pure
liquid LA, on the glass petri dish, compared to the high surface area of the LA (20 wt%)
distributed on porous MCC (0.527 cm3 g−1 intra particle pore volume and 31.6 m2 g−1

specific surface area after loading, Table 1). Furthermore, the diffusion of oxygen into the
pores (filled with headspace gas) of MCC loaded LA is much faster than the diffusion in
liquid LA which leads to a much faster reaction for MCC loaded LA than for pure liquid
LA [2]. The observations made in the present study are therefore in line with previous
studies describing that the extended surface area of MCC is ideal for higher oxidation
kinetics [25,44]. In this context, it was shown by Pfaller [44] that MCC acted as a booster in
the degradation of UFAs due to the spreading of the UFA over a large surface area, thus
enabling oxygen exposure and action on a multitude of molecular sites. This is supported
by the fact that the phenomenon is pronounced at lower loading levels and hence more
exposed surface area. Similarly, the phenomenon is diminished at full loading where the
pores are filled and oxygen access is strongly limited.

Comparison of OSA obtained in our study with the results of previous studies with
UFAs is difficult due to the different test conditions as well as different carrier matrices used.
Although many patent applications disclose UFAs as oxygen scavengers [29], scientific
studies with UFAs as scavengers are scarce. Miranda [31] investigated the integration of
oleic (18:1), linoleic (18:2), and linolenic (18:3) acid in poly(ethylene terephthalate) (PET) to
improve its oxygen barrier properties. Among all UFAs tested, linoleic acid was found to
have the highest potential as an oxygen scavenger due to its high utilization capacity (more
details in Section 4.4 Oxygen absorption capacity), relatively fast kinetics, and lower cost. In
a further study of Miranda [32], linoleic acid (0.5 wt%) was incorporated in PET bottles for
oxygen barrier improvement and an oxygen scavenging rate of about 0.62 mL O2 d−1 cm−2

was achieved with the PET/LA bottles.

4.2. Effect of Temperature on the Oxygen Scavenging Activity of MCC Loaded with UFAs

Oxidation reaction mechanisms of UFAs are highly temperature dependent [2,39,45–47].
To evaluate the potential use of MCC loaded with UFA in food packaging, oxygen scav-
enging activity of MCC loaded with oleic acid and linoleic acid was evaluated at 5 ◦C
complying with chilling room temperatures, 21 ◦C for ambient temperature and 30 ◦C
for conditions with elevated temperatures. The results shown in Figures 5 and 6 clearly
demonstrate a temperature dependency of oxygen uptake with MCC loaded OA and
LA, which is in correlation with previous experiments on oxidation of UFAs [2,45–47].
Furthermore, the observed prolongation of the initiation phase at decreasing temperatures
correlates with autoxidation behaviour of fatty acids reported in literature [2,39]. Mainly
the products stored at 5 ◦C are perishable products with high relative humidity and short
shelf lives. Since the oxygen scavenging rates of MCC loaded with UFAs are very low at
5 ◦C and high relative humidity, such scavenging systems are likely to be unsuitable for the
refrigerated food products. On the other hand, for dry products with low relative humidity
and stored at room temperature, MCC loaded with UFAs, especially with LA, have high
potential to be used as oxygen scavengers.
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4.3. Effect of Relative Humidity on the Oxygen Scavenging Activity of MCC Loaded with UFAs

Apart from temperature, relative humidity has also been identified as a major factor
to influence oxidation kinetics [48]. Depending on the water activity (aw) of a product that
is packed, the relative humidity in the packaging headspace will be different [41]. The most
common oxygen scavengers are based on iron and therefore have the serious disadvantage
that their oxygen scavenging reaction does not progress in the absence of water since water
is directly involved in the iron oxidation reaction [29]. Consequently, when dry products
are packed, scavenger activation requires the addition of water. This water, however, may
also migrate from the scavenger into the food, thereby negatively affecting the quality of
the dry food [48].

In UFA oxidation, water is not directly involved in the reaction mechanism. Never-
theless, humidity influences their oxidation susceptibility in a complex way [41]. Thereby,
different theories such as monolayer or glass transition theory on the effect of humidity
on lipid oxidation are discussed controversially [49]. According to the monolayer theory,
a monolayer of water covers the surface of the lipid, preventing it from direct exposure to
oxygen. Since glass transition theory is more applicable to foods containing protein and/or
saccharide polymers [50,51] monolayer theory could be more valid for the influence of
relative humidity on the oxidation of UFAs. Generally, a decrease in the oxidation rates of
UFAs with increasing humidity is reported [52]. This statement can be confirmed by the
results obtained in the present study (Figure 7, OA and Figure 8, LA) clearly demonstrating
the influence of RH on the oxygen scavenging activity of UFAs: The higher the RH, the
lower the OSA. Particularly with increasing RH, a prolongation of the initiation phase was
observed for both OA and LA. Thus, unsaturated fatty acids (UFAs) such as oleic or linoleic
acid have been concluded to be suitable oxygen scavenging agents for the application of
products with low or intermediary water activity. Based on the results obtained in the
present study, water activity of products packed with an oleic acid-based oxygen scavenger
are recommended to have an aw-value of <0.67, more preferably ≤0.47. For the application
of a linoleic acid-based oxygen scavenger, aw-value of packed products is recommended to
be ≤0.83, more preferably <0.67.

4.4. Oxygen Absorption Capacity of MCC Loaded with UFAs

The absorption capacity describes the maximum quantity of oxygen that can be
absorbed by a scavenging agent [48]. This property must be known to design an oxygen
scavenging packaging system where a specific amount of oxygen is aimed to be removed.
The amount of oxygen that can be absorbed by unsaturated fatty acids can be estimated
assuming that one mole of oxygen reacts with one mole of C=C. In the case of a 100%
reaction turnover, one mole of oxygen would react with one mole of oleic acid (18:1) and
two moles of oxygen with one mole of linoleic acid (18:2) [31].

For the UFAs loaded on MCC in the present study, a maximum oxygen absorption capac-
ity of >195.6 ± 13.5 mL gLA

−1 and >153.8 ± 4.7 mL gOA
−1 as well as >161.6 ± 3.4 mL gLA

−1

for pure LA was determined after six months. By investigating pure UFAs, Miranda [31] re-
ported oxygen absorption capacities of 153 ± 5 mL gLA

−1 and 10 ± 3 mL gOA
−1. By adding

a catalyst, they showed that the capacity of LA slightly decreased to 144 ± 5 mL gLA
−1,

whereas in the case of OA the capacity strongly increased to 70 ± 2 mL gOA
−1.

4.5. Storage Stability of MCC Loaded with UFAs

In practice, oxygen scavengers might be produced in large lot sizes and stored for
some time after production and until their final application. For this reason, the storage
stability of the UFAs loaded MCC was observed over a time span of six months of storage
(under exclusion of oxygen). Whereas the average oxygen scavenging rates (linear part of
the slope) remained relatively stable with the MCC loaded with oleic acid OA (Figure 10)
or linoleic acid LA (Figure 11) over the whole storage period, the initiation phase of UFA
oxidation was clearly prolonged during the storage time of six months.
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The delayed initiation phase observed during the storage of the MCC loaded with OA
and LA could be due to an adhesion (physisorption) [53] of nitrogen atoms present in the
headspace of the storage container on the free reaction sites of the UFAs. The exchange of
these nitrogen atoms with oxygen atoms in the packaging during the oxygen scavenging
tests might have delayed the initiation of the oxidation.

Although UFA-based oxygen scavengers exhibit excellent oxygen scavenging proper-
ties, to the authors’ knowledge, no commercial application has been implemented so far.
A possible reason for this might be the main disadvantage that UFA oxidation comes along
with odour-active by-products such as low-molecular-weight organic acids, aldehydes,
or ketones, that occur during the reaction between the (poly-)unsaturated molecules and
oxygen [29,30,41]. Migration of such substances from the scavenger into the package must
therefore be prevented, since these molecules can adversely affect the sensory properties
of packaged foodstuffs, even at very low concentrations, leading to consumer rejection or
the raising of food regulatory issues. The application of functional barriers holding back
organic compounds but providing oxygen permeability could be a possible approach [29].
Another way to minimize this problem could be the use of absorber/adsorber materials,
particularly, if the UFAs are meant to be incorporated into polymer matrices.

5. Conclusions

In this study, it has been demonstrated that the highly porous modified calcium
carbonate (MCC) provides a suitable carrier for integration of UFAs to be used as oxygen
scavengers. MCC loaded with linoleic acid (LA) showed remarkably higher oxygen
scavenging rates (12.2 ± 0.6 O2 d−1 g−1), and slightly higher oxygen absorption capacities
(>195.6 ± 13.5 mL g−1), compared with MCC loaded with oleic acid (OA). For both LA
and OA, oxygen scavenging activity decreased with increasing humidity (37–100% RH)
and increased with rising temperatures (5–30 ◦C). Therefore, MCC loaded with UFAs
would be particularly suitable for food products with low water activity and that are stored
under non-refrigerated conditions. In a next step, MCC loaded with UFAs, most preferably
linoleic acid, could be integrated into a packaging material to further study the oxygen
scavenging performance under real packaging and storage conditions. In particular, food
products with high unsaturated fatty acid content, such as fatty fish, plant-based oils, seeds
or nuts, would be interesting to study the prevention of lipid oxidation. Additionally, it
would be also interesting to study the potential of use of MCC as a carrier for other oxygen
scavenging agents.
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