124 research outputs found

    Sodium Stibogluconate (SSG) & Paromomycin Combination Compared to SSG for Visceral Leishmaniasis in East Africa: A Randomised Controlled Trial

    Get PDF
    Visceral leishmaniasis (VL) is a parasitic disease with about 500,000 new cases each year and is fatal if untreated. The current standard therapy involves long courses, has toxicity and there is evidence of increasing resistance. New and better treatment options are urgently needed. Recently, the antibiotic paromomycin (PM) was tested and registered in India to treat this disease, but the same dose of PM monotherapy evaluated and registered in India was not efficacious in Sudan. This article reports the results of a clinical trial to test the effectiveness of injectable PM either alone (in a higher dose) or in combination with sodium stibogluconate (SSG) against the standard SSG monotherapy treatment in four East African countries—Sudan, Kenya, Ethiopia and Uganda. The study showed that the combination of SSG &PM was as efficacious and safe as the standard SSG treatment, with the advantages of being cheaper and requiring only 17 days rather than 30 days of treatment. In March 2010, a WHO Expert Committee recommended the use of the SSG & PM combination as a first line treatment for VL in East Africa

    Geographical Variation in the Response of Visceral Leishmaniasis to Paromomycin in East Africa: A Multicentre, Open-Label, Randomized Trial

    Get PDF
    Visceral leishmaniasis (VL) is a fatal parasitic disease with 500,000 new cases each year according to WHO estimates. New and better treatment options are urgently needed in disease endemic areas due to the long courses, toxicity and development of resistance to current treatments. Recently, the antibiotic paromomycin was tested and registered in India to treat this disease. The current study describes a clinical trial to test the effectiveness of injectable paromomycin, either alone or in combination with the standard drug sodium stibogluconate in three East African countries—Sudan, Kenya and Ethiopia. The study showed that at the same paromomycin dose that was successfully used and registered in India, a far poorer outcome was obtained, particularly in Sudan, suggesting that there are either differences in the patients ability to respond to the drug or in the susceptibility of parasites in East Africa compared with those in India. However, no major safety concerns were noted with the treatment. Further research was initiated to see if a higher dose of paromomycin would perform better, especially in Sudan. The results of this and the performance of the combination arm will be reported later. Our study highlights the importance of considering geographical differences to treatment responses

    The global burden of tuberculosis: results from the Global Burden of Disease Study 2015

    Get PDF
    Background: An understanding of the trends in tuberculosis incidence, prevalence, and mortality is crucial to tracking of the success of tuberculosis control programmes and identification of remaining challenges. We assessed trends in the fatal and non-fatal burden of tuberculosis over the past 25 years for 195 countries and territories. Methods: We analysed 10 691 site-years of vital registration data, 768 site-years of verbal autopsy data, and 361 site-years of mortality surveillance data using the Cause of Death Ensemble model to estimate tuberculosis mortality rates. We analysed all available age-specific and sex-specific data sources, including annual case notifications, prevalence surveys, and estimated cause-specific mortality, to generate internally consistent estimates of incidence, prevalence, and mortality using DisMod-MR 2.1, a Bayesian meta-regression tool. We assessed how observed tuberculosis incidence, prevalence, and mortality differed from expected trends as predicted by the Socio-demographic Index (SDI), a composite indicator based on income per capita, average years of schooling, and total fertility rate. We also estimated tuberculosis mortality and disability-adjusted life-years attributable to the independent effects of risk factors including smoking, alcohol use, and diabetes. Findings: Globally, in 2015, the number of tuberculosis incident cases (including new and relapse cases) was 10·2 million (95% uncertainty interval 9·2 million to 11·5 million), the number of prevalent cases was 10·1 million (9·2 million to 11·1 million), and the number of deaths was 1·3 million (1·1 million to 1·6 million). Among individuals who were HIV negative, the number of incident cases was 8·8 million (8·0 million to 9·9 million), the number of prevalent cases was 8·9 million (8·1 million to 9·7 million), and the number of deaths was 1·1 million (0·9 million to 1·4 million). Annualised rates of change from 2005 to 2015 showed a faster decline in mortality (–4·1% [–5·0 to –3·4]) than in incidence (–1·6% [–1·9 to –1·2]) and prevalence (–0·7% [–1·0 to –0·5]) among HIV-negative individuals. The SDI was inversely associated with HIV-negative mortality rates but did not show a clear gradient for incidence and prevalence. Most of Asia, eastern Europe, and sub-Saharan Africa had higher rates of HIV-negative tuberculosis burden than expected given their SDI. Alcohol use accounted for 11·4% (9·3–13·0) of global tuberculosis deaths among HIV-negative individuals in 2015, diabetes accounted for 10·6% (6·8–14·8), and smoking accounted for 7·8% (3·8–12·0). Interpretation: Despite a concerted global effort to reduce the burden of tuberculosis, it still causes a large disease burden globally. Strengthening of health systems for early detection of tuberculosis and improvement of the quality of tuberculosis care, including prompt and accurate diagnosis, early initiation of treatment, and regular follow-up, are priorities. Countries with higher than expected tuberculosis rates for their level of sociodemographic development should investigate the reasons for lagging behind and take remedial action. Efforts to prevent smoking, alcohol use, and diabetes could also substantially reduce the burden of tuberculosis

    Trends in future health financing and coverage: future health spending and universal health coverage in 188 countries, 2016–40

    Get PDF
    Background: Achieving universal health coverage (UHC) requires health financing systems that provide prepaid pooled resources for key health services without placing undue financial stress on households. Understanding current and future trajectories of health financing is vital for progress towards UHC. We used historical health financing data for 188 countries from 1995 to 2015 to estimate future scenarios of health spending and pooled health spending through to 2040. Methods: We extracted historical data on gross domestic product (GDP) and health spending for 188 countries from 1995 to 2015, and projected annual GDP, development assistance for health, and government, out-of-pocket, and prepaid private health spending from 2015 through to 2040 as a reference scenario. These estimates were generated using an ensemble of models that varied key demographic and socioeconomic determinants. We generated better and worse alternative future scenarios based on the global distribution of historic health spending growth rates. Last, we used stochastic frontier analysis to investigate the association between pooled health resources and UHC index, a measure of a country's UHC service coverage. Finally, we estimated future UHC performance and the number of people covered under the three future scenarios. Findings: In the reference scenario, global health spending was projected to increase from US10trillion(9510 trillion (95% uncertainty interval 10 trillion to 10 trillion) in 2015 to 20 trillion (18 trillion to 22 trillion) in 2040. Per capita health spending was projected to increase fastest in upper-middle-income countries, at 4·2% (3·4–5·1) per year, followed by lower-middle-income countries (4·0%, 3·6–4·5) and low-income countries (2·2%, 1·7–2·8). Despite global growth, per capita health spending was projected to range from only 40(24–65)to40 (24–65) to 413 (263–668) in 2040 in low-income countries, and from 140(90–200)to140 (90–200) to 1699 (711–3423) in lower-middle-income countries. Globally, the share of health spending covered by pooled resources would range widely, from 19·8% (10·3–38·6) in Nigeria to 97·9% (96·4–98·5) in Seychelles. Historical performance on the UHC index was significantly associated with pooled resources per capita. Across the alternative scenarios, we estimate UHC reaching between 5·1 billion (4·9 billion to 5·3 billion) and 5·6 billion (5·3 billion to 5·8 billion) lives in 2030. Interpretation: We chart future scenarios for health spending and its relationship with UHC. Ensuring that all countries have sustainable pooled health resources is crucial to the achievement of UHC. Funding: The Bill & Melinda Gates Foundation

    Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: A systematic analysis from the Global Burden of Disease Study 2016

    Get PDF
    Copyright © 2018 The Author(s). Published by Elsevier Ltd. Background A key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016. Methods Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0-100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0-100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita. Findings In 2016, HAQ Index performance spanned from a high of 97·1 (95% UI 95·8-98·1) in Iceland, followed by 96·6 (94·9-97·9) in Norway and 96·1 (94·5-97·3) in the Netherlands, to values as low as 18·6 (13·1-24·4) in the Central African Republic, 19·0 (14·3-23·7) in Somalia, and 23·4 (20·2-26·8) in Guinea-Bissau. The pace of progress achieved between 1990 and 2016 varied, with markedly faster improvements occurring between 2000 and 2016 for many countries in sub-Saharan Africa and southeast Asia, whereas several countries in Latin America and elsewhere saw progress stagnate after experiencing considerable advances in the HAQ Index between 1990 and 2000. Striking subnational disparities emerged in personal health-care access and quality, with China and India having particularly large gaps between locations with the highest and lowest scores in 2016. In China, performance ranged from 91·5 (89·1-93·6) in Beijing to 48·0 (43·4-53·2) in Tibet (a 43·5-point difference), while India saw a 30·8-point disparity, from 64·8 (59·6-68·8) in Goa to 34·0 (30·3-38·1) in Assam. Japan recorded the smallest range in subnational HAQ performance in 2016 (a 4·8-point difference), whereas differences between subnational locations with the highest and lowest HAQ Index values were more than two times as high for the USA and three times as high for England. State-level gaps in the HAQ Index in Mexico somewhat narrowed from 1990 to 2016 (from a 20·9-point to 17·0-point difference), whereas in Brazil, disparities slightly increased across states during this time (a 17·2-point to 20·4-point difference). Performance on the HAQ Index showed strong linkages to overall development, with high and high-middle SDI countries generally having higher scores and faster gains for non-communicable diseases. Nonetheless, countries across the development spectrum saw substantial gains in some key health service areas from 2000 to 2016, most notably vaccine-preventable diseases. Overall, national performance on the HAQ Index was positively associated with higher levels of total health spending per capita, as well as health systems inputs, but these relationships were quite heterogeneous, particularly among low-to-middle SDI countries. Interpretation GBD 2016 provides a more detailed understanding of past success and current challenges in improving personal health-care access and quality worldwide. Despite substantial gains since 2000, many low-SDI and middle- SDI countries face considerable challenges unless heightened policy action and investments focus on advancing access to and quality of health care across key health services, especially non-communicable diseases. Stagnating or minimal improvements experienced by several low-middle to high-middle SDI countries could reflect the complexities of re-orienting both primary and secondary health-care services beyond the more limited foci of the Millennium Development Goals. Alongside initiatives to strengthen public health programmes, the pursuit of universal health coverage hinges upon improving both access and quality worldwide, and thus requires adopting a more comprehensive view - and subsequent provision - of quality health care for all populations

    Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories.Background Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories

    Safety and efficacy of single dose versus multiple doses of AmBisome for treatment of visceral leishmaniasis in eastern Africa: a randomised trial.

    Get PDF
    BACKGROUND: Anti-leishmanial drug regimens that include a single dose AmBisome could be suitable for eastern African patients with symptomatic visceral leishmaniasis (VL) but the appropriate single dose is unknown. METHODOLOGY: A multi-centre, open-label, non-inferiority, randomized controlled trial with an adaptive design, was conducted to compare the efficacy and safety of a single dose and multiple doses of AmBisome for the treatment of VL in eastern Africa. The primary efficacy endpoint was definitive cure (DC) at 6 months. Symptomatic patients with parasitologically-confirmed, non-severe VL, received a single dose of AmBisome 7.5 mg/kg body weight or multiple doses, 7 times 3 mg/kg on days 1-5, 14, and 21. If interim analyses, evaluated 30 days after the start of treatment following 40 or 80 patients, showed the single dose gave significantly poorer parasite clearance than multiple doses at the 5% significance level, the single dose was increased by 2·5 mg/kg. In a sub-set of patients, parasite clearance was measured by quantitative reverse transcriptase (qRT) PCR. PRINCIPAL FINDINGS: The trial was terminated after the third interim analysis because of low efficacy of both regimens. Based on the intention-to-treat population, DC was 85% (95%CI 73-93%), 40% (95%CI 19-64%), and 58% (95%CI 41-73%) in patients treated with multiple doses (n = 63), and single doses of 7·5 (n = 21) or 10 mg/kg (n = 40), respectively. qRT-PCR suggested superior parasite clearance with multiple doses as early as day 3. Safety data accorded with the drug label. CONCLUSIONS: The tested AmBisome regimens would not be suitable for VL treatment across eastern Africa. An optimal single dose regimen was not identified. TRIALS REGISTRATION: www.clinicaltrials.govNCT00832208

    Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations : a systematic analysis from the Global Burden of Disease Study 2016

    Get PDF
    Background A key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016. Methods Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0-100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0-100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita. Findings In 2016, HAQ Index performance spanned from a high of 97.1 (95% UI 95.8-98.1) in Iceland, followed by 96.6 (94.9-97.9) in Norway and 96.1 (94.5-97.3) in the Netherlands, to values as low as 18.6 (13.1-24.4) in the Central African Republic, 19.0 (14.3-23.7) in Somalia, and 23.4 (20.2-26.8) in Guinea-Bissau. The pace of progress achieved between 1990 and 2016 varied, with markedly faster improvements occurring between 2000 and 2016 for many countries in sub-Saharan Africa and southeast Asia, whereas several countries in Latin America and elsewhere saw progress stagnate after experiencing considerable advances in the HAQ Index between 1990 and 2000. Striking subnational disparities emerged in personal health-care access and quality, with China and India having particularly large gaps between locations with the highest and lowest scores in 2016. In China, performance ranged from 91.5 (89.1-936) in Beijing to 48.0 (43.4-53.2) in Tibet (a 43.5-point difference), while India saw a 30.8-point disparity, from 64.8 (59.6-68.8) in Goa to 34.0 (30.3-38.1) in Assam. Japan recorded the smallest range in subnational HAQ performance in 2016 (a 4.8-point difference), whereas differences between subnational locations with the highest and lowest HAQ Index values were more than two times as high for the USA and three times as high for England. State-level gaps in the HAQ Index in Mexico somewhat narrowed from 1990 to 2016 (from a 20.9-point to 17.0-point difference), whereas in Brazil, disparities slightly increased across states during this time (a 17.2-point to 20.4-point difference). Performance on the HAQ Index showed strong linkages to overall development, with high and high-middle SDI countries generally having higher scores and faster gains for non-communicable diseases. Nonetheless, countries across the development spectrum saw substantial gains in some key health service areas from 2000 to 2016, most notably vaccine-preventable diseases. Overall, national performance on the HAQ Index was positively associated with higher levels of total health spending per capita, as well as health systems inputs, but these relationships were quite heterogeneous, particularly among low-to-middle SDI countries. Interpretation GBD 2016 provides a more detailed understanding of past success and current challenges in improving personal health-care access and quality worldwide. Despite substantial gains since 2000, many low-SDI and middle-SDI countries face considerable challenges unless heightened policy action and investments focus on advancing access to and quality of health care across key health services, especially non-communicable diseases. Stagnating or minimal improvements experienced by several low-middle to high-middle SDI countries could reflect the complexities of re-orienting both primary and secondary health-care services beyond the more limited foci of the Millennium Development Goals. Alongside initiatives to strengthen public health programmes, the pursuit of universal health coverage upon improving both access and quality worldwide, and thus requires adopting a more comprehensive view and subsequent provision of quality health care for all populations. Copyright (C) 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Neonatal, infant, and under-5 mortality and morbidity burden in the Eastern Mediterranean region: findings from the Global Burden of Disease 2015 study

    Get PDF
    Objectives Although substantial reductions in under-5 mortality have been observed during the past 35 years, progress in the Eastern Mediterranean Region (EMR) has been uneven. This paper provides an overview of child mortality and morbidity in the EMR based on the Global Burden of Disease (GBD) study. Methods We used GBD 2015 study results to explore under-5 mortality and morbidity in EMR countries. Results In 2015, 755,844 (95% uncertainty interval (UI) 712,064–801,565) children under 5 died in the EMR. In the early neonatal category, deaths in the EMR decreased by 22.4%, compared to 42.4% globally. The rate of years of life lost per 100,000 population under 5 decreased 54.38% from 177,537 (173,812–181,463) in 1990 to 80,985 (76,308–85,876) in 2015; the rate of years lived with disability decreased by 0.57% in the EMR compared to 9.97% globally. Conclusions Our findings call for accelerated action to decrease child morbidity and mortality in the EMR. Governments and organizations should coordinate efforts to address this burden. Political commitment is needed to ensure that child health receives the resources needed to end preventable deaths

    Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: a systematic analysis from the Global Burden of Disease Study 2016

    Get PDF
    Background A key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016.Methods Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0–100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0–100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita.Background A key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016.Methods Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0–100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0–100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita
    • …
    corecore