425 research outputs found

    Trapezoidal Wing Experimental Repeatability and Velocity Profiles in the 14- by 22-Foot Subsonic Tunnel

    Get PDF
    The AIAA Applied Aerodynamics Technical Committee sponsored a High Lift Prediction Workshop held in June 2010. For this first workshop, data from the Trapezoidal Wing experiments were used for comparison to CFD. This paper presents long-term and short-term force and moment repeatability analyses for the Trapezoidal Wing model tested in the NASA Langley 14- by 22-Foot Subsonic Tunnel. This configuration was chosen for its simplified high-lift geometry, publicly available set of test data, and previous CFD experience with this configuration. The Trapezoidal Wing is a three-element semi-span swept wing attached to a body pod. These analyses focus on configuration 1 tested in 1998 (Test 478), 2002 (Test 506), and 2003 (Test 513). This paper also presents model velocity profiles obtained on the main element and on the flap during the 1998 test. These velocity profiles are primarily at an angle of attack of 28 degrees and semi-span station of 83% and show confluent boundary layers and wakes

    Preferential Myosin Heavy Chain Isoform B Expression May Contribute to the Faster Velocity of Contraction in Veins versus Arteries

    Get PDF
    Smooth muscle myosin heavy chains occur in 2 isoforms, SMA (slow) and SMB (fast). We hypothesized that the SMB isoform is predominant in the faster-contracting rat vena cava compared to thoracic aorta. We compared the time to half maximal contraction in response to a maximal concentration of endothelin-1 (ET-1; 100 nM), potassium chloride (KCl; 100 mM) and norepinephrine (NE; 10 µM). The time to half maximal contraction was shorter in the vena cava compared to aorta (aorta: ET-1 = 235.8 ± 13.8 s, KCl = 140.0 ± 33.3 s, NE = 19.8 ± 2.7 s; vena cava: ET-1 = 121.8 ± 15.6 s, KCl = 49.5 ± 6.7 s, NE = 9.0 ± 3.3 s). Reverse-transcription polymerase chain reaction supported the greater expression of SMB in the vena cava compared to aorta. SMB was expressed to a greater extent than SMA in the vessel wall of the vena cava. Western analysis determined that expression of SMB, relative to total smooth muscle myosin heavy chains, was 12.5 ± 4.9-fold higher in the vena cava compared to aorta, while SMA was 4.9 ± 1.2-fold higher in the aorta than vena cava. Thus, the SMB isoform is the predominant form expressed in rat veins, providing one possible mechanism for the faster response of veins to vasoconstrictors

    Simple Models for Diaphragm-Type Chlorine/Caustic Cells I. Dynamic Behavior

    Get PDF
    A simple model of the dynamic behavior of a diaphragm-type chlorine/caustic cell is presented. The model is based upon measurable diaphragm properties and the mass transfer of hydroxyl ion through the diaphragm. The anolyte is modeled simply as a region in which the OH– ion concentration is fixed, the diaphragm is modeled as a plug-flow reactor with an electrochemical reaction occurring at the catholyte/diaphragm interface where the cathode is placed, and the catholyte is modeled as a completely stirred flow reactor. Analytical integration of the governing equations for thesemodels yields two mathematical expressions: one for the concentration distribution of hydroxyl ion within the diaphragm and one for the effluent concentration. Both of these expressions are functions of time, independent operating variables, diaphragm properties, and physical constants. They are used to show how the concentration distribution ofOH– within the diaphragm and the cell effluent change when subjected to a step change in the current density. Also presented is a numerical method of solution for the model equations to predict the required change of the cell head subject to an arbitrary time-dependent change in the current density at a fixed cell effluent concentration

    Neurophysiological Distinction between Schizophrenia and Schizoaffective Disorder

    Get PDF
    Schizoaffective disorder (SA) is distinguished from schizophrenia (SZ) based on the presence of prominent mood symptoms over the illness course. Despite this clinical distinction, SA and SZ patients are often combined in research studies, in part because data supporting a distinct pathophysiological boundary between the disorders are lacking. Indeed, few studies have addressed whether neurobiological abnormalities associated with SZ, such as the widely replicated reduction and delay of the P300 event-related potential (ERP), are also present in SA. Scalp EEG was acquired from patients with DSM-IV SA (n = 15) or SZ (n = 22), as well as healthy controls (HC; n = 22) to assess the P300 elicited by infrequent target (15%) and task-irrelevant distractor (15%) stimuli in separate auditory and visual ”oddball” tasks. P300 amplitude was reduced and delayed in SZ, relative to HC, consistent with prior studies. These SZ abnormalities did not interact with stimulus type (target vs. task-irrelevant distractor) or modality (auditory vs. visual). Across sensory modality and stimulus type, SA patients exhibited normal P300 amplitudes (significantly larger than SZ patients and indistinguishable from HC). However, P300 latency and reaction time were both equivalently delayed in SZ and SA patients, relative to HC. P300 differences between SA and SZ patients could not be accounted for by variation in symptom severity, socio-economic status, education, or illness duration. Although both groups show similar deficits in processing speed, SA patients do not exhibit the P300 amplitude deficits evident in SZ, consistent with an underlying pathophysiological boundary between these disorders

    DC fault ride-through capability and STATCOM operation of a HVDC hybrid voltage source converter

    Get PDF
    HVDC transmission systems are becoming increasingly popular when compared to conventional AC transmission methods. HVDC voltage source converters (VSC) can offer advantages over traditional HVDC current source converter topologies; as such, it is expected that HVDC-VSCs will be further exploited with the growth of HVDC transmission. This paper presents the DC fault ride through capability and new STATCOM modes of operation for the recently published Alternate Arm Converter (AAC), intended for the HVDC market. Operation and fault ride through of the converter during a local terminal to terminal short circuit of the DC-Link is demonstrated; during the fault STATCOM operation is also demonstrated

    Role of Fourier Modes in Finite-Size Scaling above the Upper Critical Dimension

    Get PDF
    Renormalization-group theory stands, since over 40 years, as one of the pillars of modern physics. As such, there should be no remaining doubt regarding its validity. However, finite-size scaling, which derives from it, has long been poorly understood above the upper critical dimension dcd_c in models with free boundary conditions. Besides its fundamental significance for scaling theories, the issue is important at a practical level because finite-size, statistical-physics systems, with free boundaries above dcd_c, are experimentally accessible with long-range interactions. Here we address the roles played by Fourier modes for such systems and show that the current phenomenological picture is not supported for all thermodynamic observables either with free or periodic boundaries. Instead, the correct picture emerges from a sector of the renormalization group hitherto considered unphysical.Comment: 10 pages, 2 figure

    Reward processing in autism: a thematic series

    Get PDF
    This thematic series presents theoretical and empirical papers focused on understanding autism from the perspective of reward processing deficits. Although the core symptoms of autism have not traditionally been conceptualized with respect to altered reward-based processes, it is clear that brain reward circuitry plays a critical role in guiding social and nonsocial learning and behavior throughout development. Additionally, brain reward circuitry may respond to social sources of information in ways that are similar to responses to primary rewards, and recent clinical data consistently suggest abnormal behavioral and neurobiologic responses to rewards in autism. This thematic series presents empirical data and review papers that highlight the utility of considering autism from the perspective of reward processing deficits. Our hope is that this novel framework may further elucidate autism pathophysiology, with the ultimate goal of yielding novel insights with potential therapeutic implications

    A multi-decade record of high quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT)

    Get PDF
    The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) “living data” publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014). Individual data set files, included in the synthesis product, can be downloaded here: doi:10.1594/PANGAEA.849770. The gridded products are available here: doi:10.3334/CDIAC/OTG.SOCAT_V3_GRID

    A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale

    Get PDF
    In this era of complete genomes, our knowledge of neuroanatomical circuitry remains surprisingly sparse. Such knowledge is however critical both for basic and clinical research into brain function. Here we advocate for a concerted effort to fill this gap, through systematic, experimental mapping of neural circuits at a mesoscopic scale of resolution suitable for comprehensive, brain-wide coverage, using injections of tracers or viral vectors. We detail the scientific and medical rationale and briefly review existing knowledge and experimental techniques. We define a set of desiderata, including brain-wide coverage; validated and extensible experimental techniques suitable for standardization and automation; centralized, open access data repository; compatibility with existing resources, and tractability with current informatics technology. We discuss a hypothetical but tractable plan for mouse, additional efforts for the macaque, and technique development for human. We estimate that the mouse connectivity project could be completed within five years with a comparatively modest budget.Comment: 41 page

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure
    corecore