209 research outputs found
All at Once: Transient Pulsations, Spin-down, and a Glitch from the Pulsating Ultraluminous X-Ray Source M82 X-2
The first pulsating ultraluminous X-ray source (PULX) to be identified is M82 X-2. After the discovery in 2014, NuSTAR observed the M82 field 15 times throughout 2015 and 2016. In this paper, we report the results of pulsation searches in all of these data sets and find only one new detection. This new detection allows us to refine the orbital period of the source and measure an average spin-down rate between 2014 and 2016 of âź-6 Ă 10-11 Hz s-1, which is in contrast to the strong spin-up seen during the 2014 observations, representing the first detection of spin-down in a PULX system. Thanks to the improved orbital solution allowed by this new detection, we are also able to detect pulsations in additional segments of the original 2014 data set. We find a glitch superimposed on the very strong and variable spin-up already reported - the first positive glitch identified in a PULX system. We discuss the new findings in the context of current leading models for PULXs
The NuSTAR Serendipitous Survey: Hunting for the Most Extreme Obscured AGN at >10 keV
We identify sources with extremely hard X-ray spectra (i.e., with photon indices of ) in the 13 deg2 NuSTAR serendipitous survey, to search for the most highly obscured active galactic nuclei (AGNs) detected at . Eight extreme NuSTAR sources are identified, and we use the NuSTAR data in combination with lower-energy X-ray observations (from Chandra, Swift XRT, and XMM-Newton) to characterize the broadband (0.5â24 keV) X-ray spectra. We find that all of the extreme sources are highly obscured AGNs, including three robust Compton-thick (CT; cmâ2) AGNs at low redshift () and a likely CT AGN at higher redshift (z = 0.16). Most of the extreme sources would not have been identified as highly obscured based on the low-energy ( keV) X-ray coverage alone. The multiwavelength properties (e.g., optical spectra and X-rayâmid-IR luminosity ratios) provide further support for the eight sources being significantly obscured. Correcting for absorption, the intrinsic rest-frame 10â40 keV luminosities of the extreme sources cover a broad range, from to 1045 erg sâ1. The estimated number counts of CT AGNs in the NuSTAR serendipitous survey are in broad agreement with model expectations based on previous X-ray surveys, except for the lowest redshifts (), where we measure a high CT fraction of . For the small sample of CT AGNs, we find a high fraction of galaxy major mergers (50% Âą 33%) compared to control samples of "normal" AGNs
Welcome to the House of Fun: Work Space and Social Identity
Following the diffusion of HRM as the dominant legitimating managerial ideology, some employers have started to see the built working environment as a component in managing organisational culture and employee commitment. A good example is where the work space is designed to support a range of officially encouraged âfunâ activities at work. Drawing on recent research literature and from media reports of contemporary developments, this paper explores the consequences of such developments for employeesâ social identity formation and maintenance, with a particular focus on the office and customer service centre. Our analysis suggests that managementâs attempts to determine what is deemed fun may not only be resented by workers because it intrudes on their existing private identities but also because it seeks to re-shape their values and expression
Human Resource Flexibility as a Mediating Variable Between High Performance Work Systems and Performance
Much of the human resource management literature has demonstrated the impact of high performance
work systems (HPWS) on organizational performance. A new generation of studies is
emerging in this literature that recommends the inclusion of mediating variables between HPWS
and organizational performance. The increasing rate of dynamism in competitive environments
suggests that measures of employee adaptability should be included as a mechanism that may
explain the relevance of HPWS to firm competitiveness. On a sample of 226 Spanish firms, the
studyâs results confirm that HPWS influences performance through its impact on the firmâs
human resource (HR) flexibility
State of nature 2023
This is the fourth State of Nature Report. It provides a comprehensive overview of species trends across the UK, including specific assessments for England, Northern Ireland, Scotland and Wales, and for the UKâs Overseas Territories
Reproducibility in the absence of selective reporting : An illustration from large-scale brain asymmetry research
Altres ajuts: Max Planck Society (Germany).The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p-hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left-right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an "ideal publishing environment," that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically-used sample sizes
The genetic architecture of the human cerebral cortex
INTRODUCTION
The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure.
RATIONALE
To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations.
RESULTS
We identified 306 nominally genome-wide significant loci (P < 5 Ă 10â8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 Ă 10â10; 187 influencing surface area and 12 influencing thickness).
Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = â0.32, SE = 0.05, P = 6.5 Ă 10â12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness.
To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity.
We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinsonâs disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism.
CONCLUSION
This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function
Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.
BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362
Commissioning and performance of the CMS pixel tracker with cosmic ray muons
This is the Pre-print version of the Article. The official published verion of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ,
and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia);
Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG,
and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT,
SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
- âŚ