675 research outputs found

    Photoproduction of negative and positive pions from deuterium for photon energies 500 to 1000 Mev

    Get PDF
    The ratio of the yields of negative and positive pions photoproduced in deuterium has been measured at six photon energies between 500 and 1000 Mev and at seven angles between 20° and 160° in the center-of-momentum system of the photon and target nucleon. Pions were selected with a magnetic spectrometer and identified using momentum and specific ionization in a scintillation counter telescope. The spectator model of the deuteron was used to identify the photon energy. Statistical errors assigned to the π- / π+ ratio range between five and fifteen percent. The results of the present experiment join smoothly with the low-energy π- / π+ ratios obtained by Sands et al. At high energies the π- / π+ ratio varies from 0.5 at forward angles and energies near 900 Mev to 2.5 at 160° c.m. and energies 600 to 800 Mev. The cross sections for π- photo-production from neutrons have been derived from the π- / π+ ratio and the CalTech π+ photoproduction data. The angular distributions for π- production are considerably different from those for π+; there is, for example, a systematic increase at the most backward angles. The energy dependence of the total cross section for π- is similar to that for π+, although the second resonance peak occurs at a slightly lower energy, and at 900 and 1000 Mev the π- cross section is smaller by a factor 1.6. A comparison is made of the cross sections for π+ photoproduction from hydrogen and deuterium, although the accuracy of this comparison is not high

    Approaching the Dirac point in high mobility multi-layer epitaxial graphene

    Full text link
    Multi-layer epitaxial graphene (MEG) is investigated using far infrared (FIR) transmission experiments in the different limits of low magnetic fields and high temperatures. The cyclotron-resonance like absorption is observed at low temperature in magnetic fields below 50 mT, allowing thus to probe the nearest vicinity of the Dirac point and to estimate the conductivity in nearly undoped graphene. The carrier mobility is found to exceed 250,000 cm2^2/(V.s). In the limit of high temperatures, the well-defined Landau level (LL) quantization is observed up to room temperature at magnetic fields below 1 T, a phenomenon unique in solid state systems. A negligible increase in the width of the cyclotron resonance lines with increasing temperature indicates that no important scattering mechanism is thermally activated, supporting recent expectations of high room-temperature mobilities in graphene.Comment: 5 pages, 3 figure

    Submillimetre observations of RX J1856.5--3754

    Full text link
    We report on submillimetre bolometer observations of the isolated neutron star RX J1856.5--3754 using the LABOCA bolometer array on the Atacama Pathfinder Experiment (APEX) Telescope. No cold dust continuum emission peak at the position of RX J1856.5--3754 was detected. The 3 sigma flux density upper limit of 5 mJy translates into a cold dust mass limit of a few earth masses. We use the new submillimetre limit, together with a previously obtained H-band limit, to constrain the presence of a gaseous, circumpulsar disc. Adopting a simple irradiated-disc model, we obtain a mass accretion limit of dM/dt less than 10^{14} g/s, and a maximum outer disc radius of around 10^{14} cm. By examining the projected proper motion of RX J1856.5--3754, we speculate about a possible encounter of the neutron star with a dense fragment of the CrA molecular cloud a few thousand years ago.Comment: 6 pages, 3 figures, 1 table; accepted by MNRA

    Perturbation theory for self-gravitating gauge fields I: The odd-parity sector

    Full text link
    A gauge and coordinate invariant perturbation theory for self-gravitating non-Abelian gauge fields is developed and used to analyze local uniqueness and linear stability properties of non-Abelian equilibrium configurations. It is shown that all admissible stationary odd-parity excitations of the static and spherically symmetric Einstein-Yang-Mills soliton and black hole solutions have total angular momentum number â„“=1\ell = 1, and are characterized by non-vanishing asymptotic flux integrals. Local uniqueness results with respect to non-Abelian perturbations are also established for the Schwarzschild and the Reissner-Nordstr\"om solutions, which, in addition, are shown to be linearly stable under dynamical Einstein-Yang-Mills perturbations. Finally, unstable modes with â„“=1\ell = 1 are also excluded for the static and spherically symmetric non-Abelian solitons and black holes.Comment: 23 pages, revtex, no figure

    Dust-free quasars in the early Universe

    Full text link
    The most distant quasars known, at redshifts z=6, generally have properties indistinguishable from those of lower-redshift quasars in the rest-frame ultraviolet/optical and X-ray bands. This puzzling result suggests that these distant quasars are evolved objects even though the Universe was only seven per cent of its current age at these redshifts. Recently one z=6 quasar was shown not to have any detectable emission from hot dust, but it was unclear whether that indicated different hot-dust properties at high redshift or if it is simply an outlier. Here we report the discovery of a second quasar without hot-dust emission in a sample of 21 z=6 quasars. Such apparently hot-dust-free quasars have no counterparts at low redshift. Moreover, we demonstrate that the hot-dust abundance in the 21 quasars builds up in tandem with the growth of the central black hole, whereas at low redshift it is almost independent of the black hole mass. Thus z=6 quasars are indeed at an early evolutionary stage, with rapid mass accretion and dust formation. The two hot-dust-free quasars are likely to be first-generation quasars born in dust-free environments and are too young to have formed a detectable amount of hot dust around them.Comment: To be published in Nature on the 18 March 2010

    Stability and geometry of silica nano-ribbons (SNRs): a first-principles study

    Get PDF
    Silica based materials are attractive because of their versatility and their unique structures and properties, which have led to numerous applications of silica in a range of fields. Recently, various low-dimensional silica materials have been synthesized experimentally. Here we present a first-principles study on the geometry and stability of novel low-dimensional silica nano-ribbons (SNRs) using density-functional theory (DFT) with van der Waals interactions (optB88-vdW). SNRs of various widths with different surface groups, and with the geometry of hexagonal rings and squares, were taken into consideration. An atomically flat ribbon with mixing squares and rings is also included. The calculations showed high stability for the single layer and bilayer silica ribbons, both containing hexagonal rings. The calculations also revealed a high flexibility of silica chains. The local structure and chemical bonding were carefully analyzed. Electronic band structure calculations showed an insulating nature of the SNRs with energy gaps of about 5.0 to 6.0 eV, which are determined by nonbonding and anti-bonding O 2p states

    Re-localization of Cellular Protein SRp20 during Poliovirus Infection: Bridging a Viral IRES to the Host Cell Translation Apparatus

    Get PDF
    Poliovirus IRES-mediated translation requires the functions of certain canonical as well as non-canonical factors for the recruitment of ribosomes to the viral RNA. The interaction of cellular proteins PCBP2 and SRp20 in extracts from poliovirus-infected cells has been previously described, and these two proteins were shown to function synergistically in viral translation. To further define the mechanism of ribosome recruitment for the initiation of poliovirus IRES-dependent translation, we focused on the role of the interaction between cellular proteins PCBP2 and SRp20. Work described here demonstrates that SRp20 dramatically re-localizes from the nucleus to the cytoplasm of poliovirus-infected neuroblastoma cells during the course of infection. Importantly, SRp20 partially co-localizes with PCBP2 in the cytoplasm of infected cells, corroborating our previous in vitro interaction data. In addition, the data presented implicate the presence of these two proteins in viral translation initiation complexes. We show that in extracts from poliovirus-infected cells, SRp20 is associated with PCBP2 bound to poliovirus RNA, indicating that this interaction occurs on the viral RNA. Finally, we generated a mutated version of SRp20 lacking the RNA recognition motif (SRp20ΔRRM) and found that this protein is localized similar to the full length SRp20, and also partially co-localizes with PCBP2 during poliovirus infection. Expression of this mutated version of SRp20 results in a ∼100 fold decrease in virus yield for poliovirus when compared to expression of wild type SRp20, possibly via a dominant negative effect. Taken together, these results are consistent with a model in which SRp20 interacts with PCBP2 bound to the viral RNA, and this interaction functions to recruit ribosomes to the viral RNA in a direct or indirect manner, with the participation of additional protein-protein or protein-RNA interactions

    Enabling precision manufacturing of active pharmaceutical ingredients: workflow for seeded cooling continuous crystallisations

    Get PDF
    Continuous manufacturing is widely used for the production of commodity products. Currently, it is attracting increasing interest from the pharmaceutical industry and regulatory agencies as a means to provide a consistent supply of medicines. Crystallisation is a key operation in the isolation of the majority of pharmaceuticals and has been demonstrated in a continuous manner on a number of compounds using a range of processing technologies and scales. Whilst basic design principles for crystallisations and continuous processes are known, applying these in the context of rapid pharmaceutical process development with the associated constraints of speed to market and limited material availability is challenging. A systematic approach for continuous crystallisation process design is required to avoid the risk that decisions made on one aspect of the process conspire to make a later development step or steps, either for crystallisation or another unit operation, more difficult. In response to this industry challenge, an innovative system-wide approach to decision making has been developed to support rapid, systematic, and efficient continuous seeded cooling crystallisation process design. For continuous crystallisation, the goal is to develop and operate a robust, consistent process with tight control of particle attributes. Here, an innovative system-based workflow is presented that addresses this challenge. The aim, methodology, key decisions and output at each at stage are defined and a case study is presented demonstrating the successful application of the workflow for the rapid design of processes to produce kilo quantities of product with distinct, specified attributes suited to the pharmaceutical development environment. This work concludes with a vision for future applications of workflows in continuous manufacturing development to achieve rapid performance based design of pharmaceuticals

    The dust scaling relations of the Herschel Reference Survey

    Get PDF
    We combine new Herschel/SPIRE sub-millimeter observations with existing multiwavelength data to investigate the dust scaling relations of the Herschel Reference Survey, a magnitude-, volume-limited sample of ~300 nearby galaxies in different environments. We show that the dust-to-stellar mass ratio anti-correlates with stellar mass, stellar mass surface density and NUV-r colour across the whole range of parameters covered by our sample. Moreover, the dust-to-stellar mass ratio decreases significantly when moving from late- to early-type galaxies. These scaling relations are similar to those observed for the HI gas-fraction, supporting the idea that the cold dust is tightly coupled to the cold atomic gas component in the interstellar medium. We also find a weak increase of the dust-to-HI mass ratio with stellar mass and colour but no trend is seen with stellar mass surface density. By comparing galaxies in different environments we show that, although these scaling relations are followed by both cluster and field galaxies, HI-deficient systems have, at fixed stellar mass, stellar mass surface density and morphological type systematically lower dust-to-stellar mass and higher dust-to-HI mass ratios than HI-normal/field galaxies. This provides clear evidence that dust is removed from the star-forming disk of cluster galaxies but the effect of the environment is less strong than what is observed in the case of the HI disk. Such effects naturally arise if the dust disk is less extended than the HI and follows more closely the distribution of the molecular gas phase, i.e., if the dust-to-atomic gas ratio monotonically decreases with distance from the galactic center.Comment: 18 pages, 15 figures, 2 tables. Accepted for publication on A&
    • …
    corecore