61 research outputs found

    Multiple-Level Anterior Cervical Discectomy and Fusion Using PEEK Cages in Cervical Myelopathy. Is Anterior Platting Necessary?

    Get PDF
    Background Data: The use of anterior cervical discectomy and fusion (ACDF) is common in the surgical treatment of cervical myelopathy and radiculomyelopathy. Additional anterior plating is usually performed in multiple ACDF to overcome several possible complications. Purpose: To assess the safety and effectiveness of PEEK interbody fusion cages for the treatment of cervical disc disease and their application in multilevel surgery without anterior plating. Study Design: Prospective study. Patient Sample: Eight patients with cervical myelopathy and twelve with radiculomyelopathy; the study included fourteen females and six males and the mean age at surgery was 58.4±7.1 (range 50-69). Outcome Measures: Total blood loss and operative time were recorded. Clinical outcome was assessed by the JOA score and VAS. Fusion was assessed using plain radiographs. Methods: All patients had multiple levels ACDF using PEEK cages packed with autogenous bone graft obtained from the removed osteophytes. Results: Postoperatively, radiculopathy improved in all patients, whereas myelopathy improved in nineteen patients. After 12 months, fusion was achieved in 95% and cervical lordosis was restored. Neither cage extrusion nor symptomatic pseudarthrosis were observed. Conclusions: Stand-alone PEEK interbody cages are effective and reliable to increase segmental stability of the cervical spine and achieve excellent fusion rate even in multilevel disease without the need for anterior platting. (2012ESJ012

    Clinical, biochemical and inflammatory predictors of mortality in patients with spontaneous bacterial peritonitis

    Get PDF
    Background: Spontaneous bacterial peritonitis (SBP) is a serious complication of liver cirrhosis. It contributes to high morbidity and mortality in this population. In-hospital mortality of SBP ranges between 20% and 40%, suggesting that further refinements are essential in managing SBP. Early recognition of high-risk patients would enable us to reduce the short-term mortality.Objective: The current study aimed to evaluate the value of clinical, biochemical and inflammatory markers in the prediction of 1-month and 3-month cumulative mortality in patients with SBP.Patients and methods: Two hundred patients with a confirmed diagnosis of SBP were enrolled. They were admitted and received the proper treatment at the National Liver Institute Hospital-Menoufia University, Egypt. Patients were prospectively followed up for mortality over a period of three months. Predictors of mortality were assessed and analyzed.Results: Mortality rates were 20% and 41% at 1 month and 3 month respectively. Our findings showed that low blood pressure, abdominal pain, fever, higher Child-Pugh score, MELD score, serum bilirubin, INR, serum creatinine, C-reactive protein to albumin (CRP/Albumin) ratio, neutrophil–lymphocyte ratio (NLR), massive splenomegaly and large ascites have been demonstrated as risk factors associated with short-term mortality.Conclusion: SBP carries a high risk of mortality among cirrhotic patients. Clinical parameters (low blood pressure, abdominal pain, fever, massive splenomegaly and large ascites), prognostic scores (Child-Pugh and MELD) and inflammatory markers (CRP, CRP/albumin ratio, and NLR) seem to be accurate and reliable tools that could independently predict short-term mortality in patients with SBP

    MicroRNA-208a: a Good Diagnostic Marker and a Predictor of no-Reflow in STEMI Patients Undergoing Primary Percutaneuos Coronary Intervention

    Get PDF
    MicroRNA-208a is a cardiac specific oligo-nucleotide. We aimed at investigating the ability of microRNA-208a to diagnose myocardial infarction and predict the outcome of primary percutaneuos coronary angiography (PCI). Patients (n = 75) presented by chest pain were recruited into two groups. Group 1 (n = 40) had ST elevation myocardial infarction (STEMI) and underwent primary PCI: 21 patients had sufficient reperfusion and 19 had no-reflow. Group 2 (n = 35) had negative cardiac troponins (cTns). Plasma microRNA-208a expression was assessed using quantitative polymerase chain reaction and patients were followed for occurrence of in-hospital major adverse cardiac events (MACE). MicroRNA-208a could diagnose of MI (AUC of 0.926). After primary PCI, it was superior to cTnT in prediction of no-reflow (AUC difference of 0.231, P = 0.0233) and MACE (AUC difference of 0.367, P = 0.0053). Accordingly, circulating levels of miR-208a can be used as a diagnostic marker of MI and a predictor of no-reflow and in-hospital MACE

    Versatile additively manufactured (3D printed) wall-jet flow cell for high performance liquid chromatography- amperometric analysis: Application to the detection and quantification of New Psychoactive Substances (NBOMes)

    Get PDF
    Additive manufacturing (AM/3D printing) is an emerging technology of vast applicability, receiving significant interest in a plethora of industrial domains and scientific research since it allows the rapid translation of designs produced via computer software, into AM/3D printed objects. To date, AM/3D printed devices have been examined for their utilisation as convenient and cost-effective tools towards the detection and quantification of prevalent drugs of abuse. Herein, a novel AM/3D printed wall-jet flow cell was fabricated specifically for employment in high performance liquid chromatography-amperometric detection (HPLCAD) of various analytes (New Psychoactive Substances). Five sensing platforms were investigated, utilising different working electrodes, namely; screen-printed graphite electrodes (SPEs), AM/3D Proto-Pasta, AM/3D Black Magic, graphite sheet and AM/3D printed nanographite (NG) /polylactic acid (PLA)) towards the detection of New Psychoactive Substances. The flow cell was also optimised with respect to the cell geometry demonstrating significant benefits such as simple production and operation and the ability to tailor the platform to a variety of working electrodes. The AM/3D printed sensing platforms were characterised towards the (electro) analytical detection of four N-benzylmethoxy- derivatives: 25F-NBOMe, 25C-NBOMe, 25B-NBOMe and 25I-NBOMe. Furthermore, the (electro) analytical performance of the flow cell was compared with the findings in our previous work comprising of a commercially available impinging jet flow cell. The SPEs and the graphite sheet were found to demonstrate superior electrochemical (analytical) sensitivity and higher reproducibility towards the quantification of the drugs in question, followed by the NG/PLA AM, Proto-Pasta and the Black Magic. The working electrodes that exhibited satisfactory (electro) analytical responses were employed for the analysis of NBOMe derivatives in three simulated blotter papers

    The influence of lateral flake size in graphene/graphite paste electrodes: an electroanalytical investigation

    Get PDF
    We report the electroanalytical properties of graphene and graphite paste electrodes comprising varying lateral flake sizes when applied for sensing relevant biomolecules and prominent drugs of abuse

    Quick Test for Determination of N-Bombs (Phenethylamine Derivatives, NBOMe) Using High-Performance Liquid Chromatography: A Comparison between Photodiode Array and Amperometric Detection

    Get PDF
    ABSTRACT: The emergence of a new class of novel psychoactive substances, N-benzyl-substituted phenethylamine derivatives so-called “NBOMes” or “Smiles”, in the recreational drug market has forced the development of new sensitive analytical methodologies for their detection and quantitation. NBOMes’ hallucinogenic effects mimic those of the illegal psychedelic drug lysergic acid diethylamide (LSD) and are typically sold as LSD on blotter papers, resulting in a remarkable number of fatalities worldwide. In this article, four halide derivatives of NBOMe, namely, 2-(4-fluoro-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethan-1-amine, 2-(4-chloro-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethan-1-amine, 2-(4-bromo-2,5-dimethoxyphenyl)-N-(2- methoxybenzyl)ethan-1-amine, and 2-(4-iodo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethan-1-amine, were detected and quantified simultaneously using a high-performance liquid chromatographic method, and two detection systems were compared: photodiode array detection (detection system I) and amperometric detection via a commercially available impinging jet flow-cell system incorporating embedded graphite screen-printed macroelectrodes (detection system II). Under optimized experimental conditions, linear calibration plots were obtained in the concentration range of 10−300 and 20−300 μg mL−1 , for detection systems I and II, respectively. Detection limit (limit of detection) values were between 4.6−6.7 and 9.7−18 μg mL−1, for detection systems I and II, respectively. Both detectors were employed for the analysis of the four NBOMe derivatives in the bulk form, in the presence of LSD and adulterants commonly found in street samples (e.g. paracetamol, caffeine, and benzocaine). Furthermore, the method was applied for the analysis of simulated blotter papers, and the obtained percentage recoveries were satisfactory, emphasizing its advantageous applicability for the routine analysis of NBOMes in forensic laboratories

    Forensic Electrochemistry: The Electroanalytical Sensing of Mephedrone Metabolites

    Get PDF
    The constant and persistent synthesis and abuse of new psychoactive substances have sparked the requirement for rapid, on-site, sensitive analytical protocols for their sensing and quantification. Mephedrone (4-MMC) is currently one of the most popular legal highs among recreational drug abusers and imposes a serious public health problem. In this paper, the electrochemical sensing of two metabolites of 4-MMC, namely, nor-mephedrone (4-methylcathinone, 4-MC) and dihydromephedrone (4-methylephedrine, 4-MMC-R), utilizing screen-printed graphite electrodes is performed. The accessible linear ranges by cyclic voltammetry were found to correspond to 40–300 μg mL–1 for 4-MC in both phosphate buffer solution (PBS, pH 7.0) and spiked diluted human urine, whereas in the case of 4-MMC-R, the linearity ranges are 15–300 μg mL–1 (PBS, pH 3.0) and 25–300 μg mL–1 (spiked diluted human urine). To maximize the assay sensitivity, differential pulse voltammetry (DPV) was performed toward the sensing of 4-MC, which exhibited a linear response over the range 10–250 and 10–300 μg mL–1 in PBS pH 7.0 and spiked diluted human urine, respectively. However, 4-MMC-R demonstrated slightly higher sensitivity over the range 5–300 μg mL–1 in both PBS pH 3.0 and spiked diluted human urine. Using DPV, the limits of detection (3σ) were calculated and found to correspond to ca. 3.97 and 3.64 μg mL–1 for 4-MC and 4-MMC-R (PBS, pH 7.0 and 3.0), respectively, and ca. 6.34 and 3.87 μg mL–1 for 4-MC and 4-MMC-R (spiked diluted human urine), respectively. The potential interference of adulterants’ metabolites commonly found in NPS street samples was also explored (at both pH 7.0 and 3.0). The electrochemical approach reported herein provides a novel laboratory tool for the identification and quantification of synthetic cathinone metabolites and has potential for the basis of a portable analytical sensor for their fast, cheap, reliable, and accessible determination in the field

    Analytical determination of heroin, fentanyl and fentalogues using high-performance liquid chromatography with diode array and amperometric detection

    Get PDF
    Over recent years there has been a progressive increase in the adulteration of common illicit street drugs, such as heroin and cocaine, with fentanyl and its derivatives (fentalogues) being the cause of over doses ending with fatal repercussions. Consequently, there is a need for the development of sensitive, selective and reliable analytical protocols for their separation and quantification. Herein, we report for the first time, a combination of high-performance liquid chromatography with a dual-diode array and electrochemical (amperometric) detector achieved for the simultaneous detection and quantification of heroin (HRN), fentanyl and ten fentalogues; the amperometric detection is achieved using a commercially available impinging jet flow-cell that incorporates in-house screen-printed graphite macroelectrodes (SPEs). Both protocols are analytically compared and contrasted in terms of their experimental parameters and chromatographic conditions with the separation and quantification being optimized, with these protocols demonstrating a high sensitivity and reproducibility. The proposed methods were successfully applied for the analysis of the investigated drugs of abuse, in the presence of common adulterants (e.g. caffeine, paracetamol and benzocaine), co-formulated excipients (starch, lactose, aerosil 200, etc.) and simultaneously within seized street samples

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication
    corecore