926 research outputs found

    Proteomic Identification of S-Nitrosylated Golgi Proteins: New Insights into Endothelial Cell Regulation by eNOS-Derived NO

    Get PDF
    <div><h3>Background</h3><p>Endothelial nitric oxide synthase (eNOS) is primarily localized on the Golgi apparatus and plasma membrane caveolae in endothelial cells. Previously, we demonstrated that protein S-nitrosylation occurs preferentially where eNOS is localized. Thus, in endothelial cells, Golgi proteins are likely to be targets for S-nitrosylation. The aim of this study was to identify S-nitrosylated Golgi proteins and attribute their S-nitrosylation to eNOS-derived nitric oxide in endothelial cells.</p> <h3>Methods</h3><p>Golgi membranes were isolated from rat livers. S-nitrosylated Golgi proteins were determined by a modified biotin-switch assay coupled with mass spectrometry that allows the identification of the S-nitrosylated cysteine residue. The biotin switch assay followed by Western blot or immunoprecipitation using an S-nitrosocysteine antibody was also employed to validate S-nitrosylated proteins in endothelial cell lysates.</p> <h3>Results</h3><p>Seventy-eight potential S-nitrosylated proteins and their target cysteine residues for S-nitrosylation were identified; 9 of them were Golgi-resident or Golgi/endoplasmic reticulum (ER)-associated proteins. Among these 9 proteins, S-nitrosylation of EMMPRIN and Golgi phosphoprotein 3 (GOLPH3) was verified in endothelial cells. Furthermore, S-nitrosylation of these proteins was found at the basal levels and increased in response to eNOS stimulation by the calcium ionophore A23187. Immunofluorescence microscopy and immunoprecipitation showed that EMMPRIN and GOLPH3 are co-localized with eNOS at the Golgi apparatus in endothelial cells. S-nitrosylation of EMMPRIN was notably increased in the aorta of cirrhotic rats.</p> <h3>Conclusion</h3><p>Our data suggest that the selective S-nitrosylation of EMMPRIN and GOLPH3 at the Golgi apparatus in endothelial cells results from the physical proximity to eNOS-derived nitric oxide.</p> </div

    The Transcriptional Response in Human Umbilical Vein Endothelial Cells Exposed to Insulin: A Dynamic Gene Expression Approach

    Get PDF
    BACKGROUND: In diabetes chronic hyperinsulinemia contributes to the instability of the atherosclerotic plaque and stimulates cellular proliferation through the activation of the MAP kinases, which in turn regulate cellular proliferation. However, it is not known whether insulin itself could increase the transcription of specific genes for cellular proliferation in the endothelium. Hence, the characterization of transcriptional modifications in endothelium is an important step for a better understanding of the mechanism of insulin action and the relationship between endothelial cell dysfunction and insulin resistance. METHODOLOGY AND PRINCIPAL FINDINGS: The transcriptional response of endothelial cells in the 440 minutes following insulin stimulation was monitored using microarrays and compared to a control condition. About 1700 genes were selected as differentially expressed based on their treated minus control profile, thus allowing the detection of even small but systematic changes in gene expression. Genes were clustered in 7 groups according to their time expression profile and classified into 15 functional categories that can support the biological effects of insulin, based on Gene Ontology enrichment analysis. In terms of endothelial function, the most prominent processes affected were NADH dehydrogenase activity, N-terminal myristoylation domain binding, nitric-oxide synthase regulator activity and growth factor binding. Pathway-based enrichment analysis revealed "Electron Transport Chain" significantly enriched. Results were validated on genes belonging to "Electron Transport Chain" pathway, using quantitative RT-PCR. CONCLUSIONS: As far as we know, this is the first systematic study in the literature monitoring transcriptional response to insulin in endothelial cells, in a time series microarray experiment. Since chronic hyperinsulinemia contributes to the instability of the atherosclerotic plaque and stimulates cellular proliferation, some of the genes identified in the present work are potential novel candidates in diabetes complications related to endothelial dysfunction

    Interleukin-13 Promotes Susceptibility to Chlamydial Infection of the Respiratory and Genital Tracts

    Get PDF
    Chlamydiae are intracellular bacteria that commonly cause infections of the respiratory and genital tracts, which are major clinical problems. Infections are also linked to the aetiology of diseases such as asthma, emphysema and heart disease. The clinical management of infection is problematic and antibiotic resistance is emerging. Increased understanding of immune processes that are involved in both clearance and immunopathology of chlamydial infection is critical for the development of improved treatment strategies. Here, we show that IL-13 was produced in the lungs of mice rapidly after Chlamydia muridarum (Cmu) infection and promoted susceptibility to infection. Wild-type (WT) mice had increased disease severity, bacterial load and associated inflammation compared to IL-13 deficient (−/−) mice as early as 3 days post infection (p.i.). Intratracheal instillation of IL-13 enhanced bacterial load in IL-13−/− mice. There were no differences in early IFN-g and IL-10 expression between WT and IL-13−/− mice and depletion of CD4+ T cells did not affect infection in IL-13−/− mice. Collectively, these data demonstrate a lack of CD4+ T cell involvement and a novel role for IL-13 in innate responses to infection. We also showed that IL-13 deficiency increased macrophage uptake of Cmu in vitro and in vivo. Moreover, the depletion of IL-13 during infection of lung epithelial cells in vitro decreased the percentage of infected cells and reduced bacterial growth. Our results suggest that enhanced IL-13 responses in the airways, such as that found in asthmatics, may promote susceptibility to chlamydial lung infection. Importantly the role of IL-13 in regulating infection was not limited to the lung as we showed that IL-13 also promoted susceptibility to Cmu genital tract infection. Collectively our findings demonstrate that innate IL-13 release promotes infection that results in enhanced inflammation and have broad implications for the treatment of chlamydial infections and IL-13-associated diseases

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Phosphodiesterase-5 inhibitors have distinct effects on the hemodynamics of the liver

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The NO - cGMP system plays a key role in the regulation of sinusoidal tonus and liver blood flow with phosphodiesterase-5 (PDE-5) terminating the dilatory action of cGMP. We, therefore, investigated the effects of PDE-5 inhibitors on hepatic and systemic hemodynamics in rats.</p> <p>Methods</p> <p>Hemodynamic parameters were monitored for 60 min. after intravenous injection of sildenafil and vardenafil [1, 10 and 100 μg/kg (sil1, sil10, sil100, var1, var10, var100)] in anesthetized rats.</p> <p>Results</p> <p>Cardiac output and heart rate remained constant. After a short dip, mean arterial blood pressure again increased. Systemic vascular resistance transiently decreased slightly. Changes in hepatic hemodynamic parameters started after few minutes and continued for at least 60 min. Portal (var10 -31%, sil10 -34%) and hepatic arterial resistance (var10 -30%, sil10 -32%) decreased significantly (p < 0.05). At the same time portal venous (var10 +29%, sil10 +24%), hepatic arterial (var10 +34%, sil10 +48%), and hepatic parenchymal blood flow (var10 +15%, sil10 +15%) increased significantly (p < 0.05). The fractional liver blood flow (total liver flow/cardiac output) increased significantly (var10 26%, sil10 23%). Portal pressure remained constant or tended to decrease. 10 μg/kg was the most effective dose for both PDE-5 inhibitors.</p> <p>Conclusion</p> <p>Low doses of phosphodiesterase-5 inhibitors have distinct effects on hepatic hemodynamic parameters. Their therapeutic use in portal hypertension should therefore be evaluated.</p

    Mitochondrial Superoxide Contributes to Blood Flow and Axonal Transport Deficits in the Tg2576 Mouse Model of Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is a neurodegenerative disease characterized by the progressive decline in cognitive functions and the deposition of aggregated amyloid beta (Abeta) into senile plaques and the protein tau into tangles. In addition, a general state of oxidation has long been known to be a major hallmark of the disease. What is not known however, are the mechanisms by which oxidative stress contributes to the pathology of AD.In the current study, we used a mouse model of AD and genetically boosted its ability to quench free radicals of specific mitochondrial origin. We found that such manipulation conferred to the AD mice protection against vascular as well as neuronal deficits that typically affect them. We also found that the vascular deficits are improved via antioxidant modulation of the endothelial nitric oxide synthase, an enzyme primarily responsible for the production of nitric oxide, while neuronal deficits are improved via modulation of the phosphorylation status of the protein tau, which is a neuronal cytoskeletal stabilizer.These findings directly link free radicals of specific mitochondrial origin to AD-associated vascular and neuronal pathology

    Molecular Biomarkers of Vascular Dysfunction in Obstructive Sleep Apnea

    Get PDF
    Untreated and long-lasting obstructive sleep apnea (OSA) may lead to important vascular abnormalities, including endothelial cell (EC) dysfunction, hypertension, and atherosclerosis. We observed a correlation between microcirculatory reactivity and endothelium-dependent release of nitric oxide in OSA patients. Therefore, we hypothesized that OSA affects (micro)vasculature and we aimed to identify vascular gene targets of OSA that could possibly serve as reliable biomarkers of severity of the disease and possibly of vascular risk. Using quantitative RT-PCR, we evaluated gene expression in skin biopsies of OSA patients, mouse aortas from animals exposed to 4-week intermittent hypoxia (IH; rapid oscillations in oxygen desaturation and reoxygenation), and human dermal microvascular (HMVEC) and coronary artery endothelial cells (HCAEC) cultured under IH. We demonstrate a significant upregulation of endothelial nitric oxide synthase (eNOS), tumor necrosis factor-alpha-induced protein 3 (TNFAIP3; A20), hypoxia-inducible factor 1 alpha (HIF-1α?? and vascular endothelial growth factor (VEGF) expression in skin biopsies obtained from OSA patients with severe nocturnal hypoxemia (nadir saturated oxygen levels [SaO2]<75%) compared to mildly hypoxemic OSA patients (SaO2 75%–90%) and a significant upregulation of vascular cell adhesion molecule 1 (VCAM-1) expression compared to control subjects. Gene expression profile in aortas of mice exposed to IH demonstrated a significant upregulation of eNOS and VEGF. In an in vitro model of OSA, IH increased expression of A20 and decreased eNOS and HIF-1α expression in HMVEC, while increased A20, VCAM-1 and HIF-1αexpression in HCAEC, indicating that EC in culture originating from distinct vascular beds respond differently to IH stress. We conclude that gene expression profiles in skin of OSA patients may correlate with disease severity and, if validated by further studies, could possibly predict vascular risk in OSA patients

    ERYTHROPOIETIN FOR THE TREATMENT OF SUBARACHNOID HEMORRAGE: A FEASIBLE INGREDIENT FOR A SUCCESS MEDICAL RECIPE

    Get PDF
    Subaracnhoid hemorrage (SAH) following aneurysm bleeding accounts for 6% to 8% of all cerebrovascular accidents. Althoug an aneurysm can be effectively managed by surgery or endovascular therapy, delayed cerebral ischemia is diagnosed in a high percentage of patients resulting in significant morbility and mortality. Cerebral vasospasm occurs in more than half of all patients after aneurysm rupture and is recognized as the leading cause of delayed cerebral ischemia after SAH. Hemodynamic strategies and endovascular procedures may be considered fo the treatment of cerebral vasospasm. In recent years, the mechanism contributing to the development of vasospasm, abnormal reactivity of cerebral arteries and cerebral ischemia following SAH, have been intensively investigated. A number of pathological processes have been identified in the pathogenesis of vasospasm including endothelial injury, smooth muscle cell contraction from spasmogenic substances produced by the subarachnoid blood clots, changes in vascular responsiveness and inflammatory response of the vascular endothelium. to date, the current therapeutic interventions remain ineffective being limited to the manipulation os systemic blood pressure, variation of blood volume and viscosity, and control of arterial carbon dioxide tension. In this scenario, the hormone erythropoietin (EPO), has been found to exert neuroprotective action during experimental SAH when its recombinant form (rHuEPO) is systematically administered. However, recent translation of experimental data into clinical trials has suggested an unclear role of recombinant human EPO in the setting of SAH. In this context, the aim of the recurrent review is to present current evidence on the potential role of EPO in cerebrovascular dysfunction following aneurysmal subarachnoid hemorrage
    corecore