137 research outputs found

    (R)-␣-Lipoic Acid Protects Retinal Pigment Epithelial Cells from Oxidative Damage

    Get PDF
    PURPOSE. To determine whether (R)-␣-lipoic acid (LA) protects cultured human fetal retinal pigment epithelial (hfRPE) cells against oxidative injury and identify the pathways that may mediate protection. METHODS. Cultured hfRPE cells were pretreated with various concentrations of LA for 14 to 16 hours followed by treatment with a chemical oxidant, tert-butylhydroperoxide (t-BuOOH; 0.8 mM, 3 hours). Reactive oxygen species (ROS) production and cell viability were measured using H 2 DCF and MTT assays, respectively. RPE cells were evaluated with fluorescent dyes (SYTOX Orange and SYTO Green; Molecular Probes, Eugene, OR), which differentiate between live and dead cells. Apoptosis was visualized by using the TUNEL assay. Changes in mitochondrial membrane potential were detected by JC-1 dye. Intracellular levels of reduced glutathione (GSH) and oxidized glutathione (GSSG) were measured by HPLC. Regulation of ␥-glutamylcysteine ligase (GCL), the rate-controlling enzyme of GSH production, was assayed by RT-PCR. RESULTS. Pretreatment of hfRPE cells with LA, 0.2 mM and 0.5 mM, significantly reduced the levels of t-BuOOH-induced intracellular ROS, by 23% and 49%, respectively. LA (0.5 mM) prevented oxidant-induced cell death and apoptosis and also increased the viability of oxidant-treated hfRPE cells from 38% to 90% of control. LA upregulated the mRNA expression of GCL, and was protective against t-BuOOH-induced decreases in both mitochondrial membrane potential and intracellular levels of GSH and GSH/GSSG. CONCLUSIONS. The present study suggests that the protective effect of LA involves multiple pathways and that LA could be effective against age-associated increase in oxidative stress and mitochondrial dysfunction in RPE cells. (Invest Ophthalmol Vis Sci. 2005;46:4302-4310) DOI:10.1167/iovs.04-1098 A ge-related macular degeneration (AMD) is the major cause of severe visual impairment for elderly individuals in developed countries. 1-3 Although the underlying pathogenic mechanisms and risk factors are not well understood, 1-9 epidemiologic studies suggest that environmental factors associated with oxidative stress-for example, cigarette smoking, sunlight exposure, and low dietary intake of antioxidants-are contributing factors in the development of AMD. 4 -7 Recent results have shown that antioxidants and zinc protect against the progression of the disease. 8 There is good evidence to suggest that the retinal pigment epithelium (RPE), choriocapillaris, and distal retina are all involved in this process, but the pathology associated with each can be difficult to distinguish, given their close anatomic, physiologic, and metabolic relationships. 7,15 A significant oxidative load is associated with the RPE phagocytosis of photoreceptor outer segments, 16 Cellular membranes with high polyunsaturated fatty acids are particularly susceptible to radical-induced chain reactions of lipid peroxidation. 17 Age-associated decreases in antioxidant defense mechanisms throughout the body can further increase the levels of RPE exposure to oxidants. For example, the levels of plasma glutathione (GSH), one of the major water-soluble antioxidants, decrease with age. 19 -21 Oxidantinduced mitochondrial dysfunction and death of RPE cells may contribute to the onset of AMD. 27-29 ␣-Lipoic acid is a potent intracellular antioxidant that can induce all three cellular protective mechanisms. 36 t-BuOOH is a relatively stable alkyl peroxide that readily penetrates cell membranes From th

    Deiminated proteins and extracellular vesicles - novel serum biomarkers in whales and Orca

    Get PDF
    Peptidylarginine deiminases (PADs) are a family of phylogenetically conserved calcium-dependent enzymes which cause post-translational protein deimination. This can result in neoepitope generation, affect gene regulation and allow for protein moonlighting via functional and structural changes in target proteins. Extracellular vesicles (EVs) carry cargo proteins and genetic material and are released from cells as part of cellular communication. EVs are found in most body fluids where they can be useful biomarkers for assessment of health status. Here, serum-derived EVs were profiled, and post-translationally deiminated proteins and EV-related microRNAs are described in 5 ceataceans: minke whale, fin whale, humpback whale, Cuvier's beaked whale and orca. EV-serum profiles were assessed by transmission electron microscopy and nanoparticle tracking analysis. EV profiles varied between the 5 species and were identified to contain deiminated proteins and selected key inflammatory and metabolic microRNAs. A range of proteins, critical for immune responses and metabolism were identified to be deiminated in cetacean sera, with some shared KEGG pathways of deiminated proteins relating to immunity and physiology, while some KEGG pathways were species-specific. This is the first study to characterise and profile EVs and to report deiminated proteins and putative effects of protein-protein interaction networks via such post-translationald deimination in cetaceans, revealing key immune and metabolic factors to undergo this post-translational modification. Deiminated proteins and EVs profiles may possibly be developed as new biomarkers for assessing health status of sea mammals

    Loss of IGF1R in human astrocytes alters complex I activity and support for neurons

    Get PDF
    The insulin/insulin-like growth factor 1 (IGF1) signalling pathways are implicated in longevity and in progression of Alzheimer's disease. Previously, we showed that insulin-like growth factor 1 receptor (IGF1R) and downstream signalling transcripts are reduced in astrocytes in human brain with progression of Alzheimer's neuropathology and developed a model of IGF1 signalling impairment in human astrocytes using an IGF1R-specific monoclonal antibody, MAB391. Here, we have established a novel human astrocyte-neuron co-culture system to determine whether loss of astrocytic IGF1R affects their support for neurons. Astrocyte-neuron co-cultures were developed using human primary astrocytes and differentiated Lund Human Mesencephalic Cells (LUHMES). Neurite outgrowth assays, performed to measure astrocytic support for neurons, showed astrocytes provided contact-mediated support for neurite outgrowth. Loss of IGF1R did not affect neurite outgrowth under control conditions but when challenged with hydrogen peroxide IGF1R-impaired astrocytes were less able to protect LUHMES. To determine how loss of IGF1R affects neuronal support MAB391-treated astrocytes were FACS sorted from GFP-LUHMES and their transcriptomic profile was investigated using microarrays. Changes in transcripts involved in astrocyte energy metabolism were identified, particularly NDUFA2 and NDUFB6, which are related to complex I assembly. Loss of complex I activity in MAB391-treated astrocytes validated these findings. In conclusion, reduced IGF1 signalling in astrocytes impairs their support for neurons under conditions of stress and this is associated with defects in the mitochondrial respiratory chain in astrocytes

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Regulation of inflammatory transcription factors by heat shock protein 70 in primary cultured astrocytes exposed to oxygen–glucose deprivation

    Full text link
    Inflammation is an important event in ischemic injury. These immune responses begin with the expression of pro-inflammatory genes modulating transcription factors, such as nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and signal transducers and activator of transcription-1 (STAT-1). The 70-kDa heat shock protein (Hsp70) can both induce and arrest inflammatory reactions and lead to improved neurological outcome in experimental brain injury and ischemia. Since Hsp70 are induced under heat stress, we investigated the link between Hsp70 neuroprotection and phosphorylation of inhibitor of κB (IκB), c-Jun N-terminal kinases (JNK) and p38 through co-immunoprecipitation and enzyme-linked immunosorbent assay (ELISA) assay. Transcription factors and pro-inflammatory genes were quantified by immunoblotting, electrophoretic-mobility shift assay and reverse transcription-polymerase chain reaction assays. The results showed that heat stress led to Hsp70 overexpression which rendered neuroprotection after ischemia-like injury. Overexpression Hsp70 also interrupts the phosphorylation of IκB, JNK and p38 and blunts DNA binding of their transcription factors (NF-κB, AP-1 and STAT-1), effectively downregulating the expression of pro-inflammatory genes in heat-pretreated astrocytes. Taken together, these results suggest that overexpression of Hsp70 may protect against brain ischemia via an anti-inflammatory mechanism by interrupting the phosphorylation of upstream of transcription factors
    corecore