1,156 research outputs found

    Co-localization of activating transcription factor 3 and phosphorylated c-Jun in axotomized facial motoneurons

    Get PDF
    Activating transcription factor 3 (ATF3) and c-Jun play key roles in either cell death or cell survival, depending on the cellular background. To evaluate the functional significance of ATF3/c-Jun in the peripheral nervous system, we examined neuronal cell death, activation of ATF3/c-Jun, and microglial responses in facial motor nuclei up to 24 weeks after an extracranial facial nerve axotomy in adult rats. Following the axotomy, neuronal survival rate was progressively but significantly reduced to 79.1% at 16 weeks post-lesion (wpl) and to 65.2% at 24 wpl. ATF3 and phosphorylated c-Jun (pc-Jun) were detected in the majority of ipsilateral facial motoneurons with normal size and morphology during the early stage of degeneration (1-2 wpl). Thereafter, the number of facial motoneurons decreased gradually, and both ATF3 and pc-Jun were identified in degenerating neurons only. ATF3 and pc-Jun were co-localized in most cases. Additionally, a large number of activated microglia, recognized by OX6 (rat MHC II marker) and ED1 (phagocytic marker), gathered in the ipsilateral facial motor nuclei. Importantly, numerous OX6- and ED1-positive, phagocytic microglia closely surrounded and ingested pc-Jun-positive, degenerating neurons. Taken together, our results indicate that long-lasting co-localization of ATF3 and pc-Jun in axotomized facial motoneurons may be related to degenerative cascades provoked by an extracranial facial nerve axotomy

    Disinhibition of hippocampal CA3 neurons induced by suppression of an adenosine A1 receptor-mediated inhibitory tonus: Pre- and postsynaptic components

    Get PDF
    Intracellular recordings were performed on hippocampal CA3 neuronsin vitro to investigate the inhibitory tonus generated by endogenously produced adenosine in this brain region. Bath application of the highly selective adenosine A1 receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine at concentrations up to 100 nM induced both spontaneous and stimulus-evoked epileptiform burst discharges. Once induced, the 1,3-dipropyl-8-cyclopentylxanthine-evoked epileptiform activity was apparently irreversible even after prolonged superfusion with drug-free solution. The blockade of glutamatergic excitatory synaptic transmission by preincubation of the slices with the amino-3-hydroxy-5-methyl-4-isoxazolpropionic acid receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (10 μM), but not with theN-methyl-d-aspartate receptor antagonistd-2-amino-5-phosphonovaleric acid (50/μM), prevented the induction of epileptiform activity by 1,3-dipropyl-8-cyclopentylxanthine. The generation of the burst discharges was independent of the membrane potential, and the amplitude of the slow component of the paroxysmal depolarization shift increased with hyperpolarization, indicating that the 1,3-dipropyl-8-cyclopentylxanthine-induced bursts were synaptically mediated events. Recordings from tetrodotoxin-treated CA3 neurons revealed a strong postsynaptic component of endogenous adenosinergic inhibition. Both 1,3-dipropyl-8-cyclopentylxanthine and the adenosine-degrading enzyme adenosine deaminase produced an apparently irreversible depolarization of the membrane potential by about 20 mV. Sometimes, this depolarization attained the threshold for the generation of putative calcium spikes, but no potential changes resembling paroxysmal depolarization shift-like events were observed

    Nitric Oxide Is an Essential Mediator for Neuronal Differentiation of Rat Primary Cortical Neuron Cells

    Get PDF
    Nitric oxide (NO) regulates proliferation, differentiation and survival of neurons. Although NO is reported to involve in NGF-induced differentiation of PC12 cells, the role of NO has not been characterized in primary neuron cells. Therefore, we investigated the role of NO in neuronal differentiation of primary cortical neuron cells. Primary cortical neuron cells were prepared from rat embryos of embryonic day 18 and treated with NMMA (NOS inhibitor) or PTIO (NO scavenger). Neurite outgrowth of neuron cells was counted and the mRNA levels of p21, p27, c-jun and c-myc were measured by RT-PCR. Neurite outgrowth of primary cortical neuron cells was inhibited a little by NOS inhibitor and completely by NO scavenger. The mRNA levels of p21 and p27, differentiation-induced growth arrest genes were increased during differentiation, but they were decreased by NOS inhibitor or NO scavenger. On the other hand, the level of c-jun mRNA was not changed and the level of c-myc mRNA was increased during differentiation differently from previously reported. The levels of these mRNA were reversed in NOS inhibitor- or NO scavenger-treated cells. The level of nNOS protein was not changed but NOS activity was inhibited largely by NOS inhibitor or NO scavenger. These results suggest that NO is an essential mediator for neuronal differentiation of primary cortical neuron cells

    A role for human brain pericytes in neuroinflammation

    Get PDF
    BACKGROUND: Brain inflammation plays a key role in neurological disease. Although much research has been conducted investigating inflammatory events in animal models, potential differences in human brain versus rodent models makes it imperative that we also study these phenomena in human cells and tissue. METHODS: Primary human brain cell cultures were generated from biopsy tissue of patients undergoing surgery for drug-resistant epilepsy. Cells were treated with pro-inflammatory compounds IFNγ, TNFα, IL-1β, and LPS, and chemokines IP-10 and MCP-1 were measured by immunocytochemistry, western blot, and qRT-PCR. Microarray analysis was also performed on late passage cultures treated with vehicle or IFNγ and IL-1β. RESULTS: Early passage human brain cell cultures were a mixture of microglia, astrocytes, fibroblasts and pericytes. Later passage cultures contained proliferating fibroblasts and pericytes only. Under basal culture conditions all cell types showed cytoplasmic NFκB indicating that they were in a non-activated state. Expression of IP-10 and MCP-1 were significantly increased in response to pro-inflammatory stimuli. The two chemokines were expressed in mixed cultures as well as cultures of fibroblasts and pericytes only. The expression of IP-10 and MCP-1 were regulated at the mRNA and protein level, and both were secreted into cell culture media. NFκB nuclear translocation was also detected in response to pro-inflammatory cues (except IFNγ) in all cell types. Microarray analysis of brain pericytes also revealed widespread changes in gene expression in response to the combination of IFNγ and IL-1β treatment including interleukins, chemokines, cellular adhesion molecules and much more. CONCLUSIONS: Adult human brain cells are sensitive to cytokine challenge. As expected 'classical' brain immune cells, such as microglia and astrocytes, responded to cytokine challenge but of even more interest, brain pericytes also responded to such challenge with a rich repertoire of gene expression. Immune activation of brain pericytes may play an important role in communicating inflammatory signals to and within the brain interior and may also be involved in blood brain barrier (BBB) disruption . Targeting brain pericytes, as well as microglia and astrocytes, may provide novel opportunities for reducing brain inflammation and maintaining BBB function and brain homeostasis in human brain disease

    Expression of c-fos in hilar mossy cells of the dentate gyrus in vivo.

    Get PDF
    Granule cells (GCs) of the dentate gyrus (DG) are considered to be quiescent--they rarely fire action potentials. In contrast, the other glutamatergic cell type in the DG, hilar mossy cells (MCs) often have a high level of spontaneous activity based on recordings in hippocampal slices. MCs project to GCs, so activity in MCs could play an important role in activating GCs. Therefore, we investigated whether MCs were active under basal conditions in vivo, using the immediate early gene c-fos as a tool. We hypothesized that MCs would exhibit c-fos expression even if rats were examined randomly, under normal housing conditions. Therefore, adult male rats were perfused shortly after removal from their home cage and transfer to the laboratory. Remarkably, most c-fos immunoreactivity (ir) was in the hilus, especially temporal hippocampus. C-fos-ir hilar cells co-expressed GluR2/3, suggesting that they were MCs. C-fos-ir MCs were robust even when the animal was habituated to the investigator and laboratory where they were euthanized. However, c-fos-ir in dorsal MCs was reduced under these circumstances, suggesting that ventral and dorsal MCs are functionally distinct. Interestingly, there was an inverse relationship between MC and GC layer c-fos expression, with little c-fos expression in the GC layer in ventral sections where MC expression was strong, and the opposite in dorsal hippocampus. The results support the hypothesis that a subset of hilar MCs are spontaneously active in vivo and provide other DG neurons with tonic depolarizing input

    Adult Human Brain Neural Progenitor Cells (NPCs) and Fibroblast-Like Cells Have Similar Properties In Vitro but Only NPCs Differentiate into Neurons

    Get PDF
    The ability to culture neural progenitor cells from the adult human brain has provided an exciting opportunity to develop and test potential therapies on adult human brain cells. To achieve a reliable and reproducible adult human neural progenitor cell (AhNPC) culture system for this purpose, this study fully characterized the cellular composition of the AhNPC cultures, as well as the possible changes to this in vitro system over prolonged culture periods. We isolated cells from the neurogenic subventricular zone/hippocampus (SVZ/HP) of the adult human brain and found a heterogeneous culture population comprised of several types of post-mitotic brain cells (neurons, astrocytes, and microglia), and more importantly, two distinct mitotic cell populations; the AhNPCs, and the fibroblast-like cells (FbCs). These two populations can easily be mistaken for a single population of AhNPCs, as they both proliferate under AhNPC culture conditions, form spheres and express neural progenitor cell and early neuronal markers, all of which are characteristics of AhNPCs in vitro. However, despite these similarities under proliferating conditions, under neuronal differentiation conditions, only the AhNPCs differentiated into functional neurons and glia. Furthermore, AhNPCs showed limited proliferative capacity that resulted in their depletion from culture by 5–6 passages, while the FbCs, which appear to be from a neurovascular origin, displayed a greater proliferative capacity and dominated the long-term cultures. This gradual change in cellular composition resulted in a progressive decline in neurogenic potential without the apparent loss of self-renewal in our cultures. These results demonstrate that while AhNPCs and FbCs behave similarly under proliferative conditions, they are two different cell populations. This information is vital for the interpretation and reproducibility of AhNPC experiments and suggests an ideal time frame for conducting AhNPC-based experiments

    Colocalization of tyrosine hydroxylase and Fos in the male Syrian hamster brain following different states of arousal

    Full text link
    In an investigation of the role that central tyrosine hydroxylase-(TH) containing neurons play in copulation in the male Syrian hamster, The induction of Fos protein was used as an index of neuronal activation. With a double immunoperoxidase technique, the activation of TH neurons was compared in hamsters from three experimental groups: (1) mated in a new cage; (2) handled controls placed in a new cage, and (3) unhandled controls. Although mating selectively induces Fos production in the medial amygdaloid nucleus (Me), more than half of the TH neurons in Me (a region outside of the classical catecholamine systems) expressed Fos equally in all of the experimental groups. In the paraventricular hypothalamic nucleus (PVN), TH neurons were activated equivalently in mated and handled control animals compared to unhandled controls. TH neurons in the neucleus of the solitary tract (NST) were also activated in handled control animals, and mating further enhanced the level of Fos immunostaining in these neurons above both groups of nonmated animals. Although not quantified, co-localization of Fos and TH was also observed in all experimental groups in the olfactory bulbs and the interfascicular nucleus, and in the horizontal limb of the diagonal band of Broca and the cerebral cortex, regions which contain TH neurons but are not part of the classically described TH cell groups. Few, if any, TH neurons in other catecholaminergic brain regions, such as the substantia nigra and locus coeruleus, produced Fos in any of the experimental groups. These results suggest that TH neurons in the PVN and NST may be activated during different states of arousal, and that nonclassical TH neurons in the amygdala produce high levels of Fos even in unstimulated animals. 1994 John Wiley & Sons, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50083/1/480250207_ftp.pd

    Cannabidivarin (CBDV) suppresses pentylenetetrazole (PTZ)-induced increases in epilepsy-related gene expression

    Get PDF
    To date, anticonvulsant effects of the plant cannabinoid, cannabidivarin (CBDV), have been reported in several animal models of seizure. However, these behaviourally observed anticonvulsant effects have not been confirmed at the molecular level. To examine changes to epilepsy-related gene expression following chemical convulsant treatment and their subsequent control by phytocannabinoid administration, we behaviourally evaluated effects of CBDV (400 mg/kg, p.o.) on acute, pentylenetetra- zole (PTZ: 95 mg/kg, i.p.)-induced seizures, quantified expression levels of several epilepsy-related genes (Fos, Casp 3, Ccl3, Ccl4, Npy, Arc, Penk, Camk2a, Bdnf and Egr1) by qPCR using hippocampal, neocortical and prefrontal cortical tissue samples before examining correlations between expression changes and seizure severity. PTZ treatment alone produced generalised seizures (median: 5.00) and significantly increased expression of Fos, Egr1, Arc, Ccl4 and Bdnf. Consistent with previous findings, CBDV significantly decreased PTZ-induced seizure severity (median: 3.25) and increased latency to the first sign of seizure. Furthermore, there were correlations between reductions of seizure severity and mRNA expression of Fos, Egr1, Arc, Ccl4 and Bdnf in the majority of brain regions in the CBDV+PTZ treated group. When CBDV treated animals were grouped into CBDV responders (criterion: seizure severity ≤ 3.25) and non-responders (criterion: seizure severity >3.25), PTZ-induced increases of Fos, Egr1, Arc, Ccl4 and Bdnf expression were suppressed in CBDV re- sponders. These results provide the first molecular confirmation of behaviourally observed effects of the non-psychoactive, anticonvulsant cannabinoid, CBDV, upon chemically-induced seizures and serve to underscore its suitability for clinical development
    • …
    corecore