59 research outputs found

    An exploratory study of healthcare professionals' perceptions of interprofessional communication and collaboration

    Get PDF
    Interprofessional communication and collaboration during hospitalisation is critically important to provide safe and effective care. Clinical rounds are an essential interprofessional process in which the clinical problems of patients are discussed on a daily basis. The objective of this exploratory study was to identify healthcare professionals' perspectives on the ideal interprofessional round for patients in a university teaching hospital. Three focus groups with medical residents, registered nurses, medical specialists, and quality improvement officers were held. We used a descriptive method of content analysis. The findings indicate that it is important for professionals to consider how team members and patients are involved in the decision-making process during the clinical round and how current social and spatial structures can affect communication and collaboration between the healthcare team and the patient. Specific aspects of communication and collaboration are identified for improving effective interprofessional communication and collaboration during rounds

    Aniline incorporated silica nanobubbles

    Get PDF
    We report the synthesis of stearate functionalized nanobubbles of SiO2 with a few aniline molecules inside, represented as C6H5NH2@SiO2@stearate, exhibiting fluorescence with red-shifted emission. Stearic acid functionalization allows the materials to be handled just as free molecules, for dissolution, precipitation, storage etc. The methodology adopted involves adsorption of aniline on the surface of gold nanoparticles with subsequent growth of a silica shell through monolayers, followed by the selective removal of the metal core either using sodium cyanide or by a new reaction involving halocarbons. The material is stable and can be stored for extended periods without loss of fluorescence. Spectroscopic and voltammetric properties of the system were studied in order to understand the interaction of aniline with the shell as well as the monolayer, whilst transmission electron microscopy has been used to study the silica shell

    Phenotype-dependent apoptosis signalling in mesothelioma cells after selenite exposure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Selenite is a promising anticancer agent which has been shown to induce apoptosis in malignant mesothelioma cells in a phenotype-dependent manner, where cells of the chemoresistant sarcomatoid phenotype are more sensitive.</p> <p>Methods</p> <p>In this paper, we investigate the apoptosis signalling mechanisms in sarcomatoid and epithelioid mesothelioma cells after selenite treatment. Apoptosis was measured with the Annexin-PI assay. The mitochondrial membrane potential, the expression of Bax, Bcl-XL, and the activation of caspase-3 were assayed with flow cytometry and a cytokeratin 18 cleavage assay. Signalling through JNK, p38, p53, and cathepsins B, D, and E was investigated with chemical inhibitors. Furthermore, the expression, nuclear translocation and DNA-binding activity of p53 was investigated using ICC, EMSA and the monitoring of p21 expression as a downstream event. Levels of thioredoxin (Trx) were measured by ELISA.</p> <p>Results</p> <p>In both cell lines, 10 μM selenite caused apoptosis and a marked loss of mitochondrial membrane potential. Bax was up-regulated only in the sarcomatoid cell line, while the epithelioid cell line down-regulated Bcl-XL and showed greater caspase-3 activation. Nuclear translocation of p53 was seen in both cell lines, but very little p21 expression was induced. Chemical inhibition of p53 did not protect the cells from apoptosis. p53 lost its DNA binding ability after selenite treatment and was enriched in an inactive form. Levels of thioredoxin decreased after selenite treatment. Chemical inhibition of MAP kinases and cathepsins showed that p38 and cathepsin B had some mediatory effect while JNK had an anti-apoptotic role.</p> <p>Conclusion</p> <p>We delineate pathways of apoptosis signalling in response to selenite, showing differences between epithelioid and sarcomatoid mesothelioma cells. These differences may partly explain why sarcomatoid cells are more sensitive to selenite.</p

    Absence of XMRV and Closely Related Viruses in Primary Prostate Cancer Tissues Used to Derive the XMRV-Infected Cell Line 22Rv1

    Get PDF
    The 22Rv1 cell line is widely used for prostate cancer research and other studies throughout the world. These cells were established from a human prostate tumor, CWR22, that was serially passaged in nude mice and selected for androgen independence. The 22Rv1 cells are known to produce high titers of xenotropic murine leukemia virus-related virus (XMRV). Recent studies suggested that XMRV was inadvertently created in the 1990's when two murine leukemia virus (MLV) genomes (pre-XMRV1 and pre-XMRV-2) recombined during passaging of the CWR22 tumor in mice. The conclusion that XMRV originated from mice and not the patient was based partly on the failure to detect XMRV in early CWR22 xenografts. While that deduction is certainly justified, we examined the possibility that a closely related virus could have been present in primary tumor tissue. Here we report that we have located the original prostate tumor tissue excised from patient CWR22 and have assayed the corresponding DNA by PCR and the tissue sections by fluorescence in situ hybridization for the presence of XMRV or a similar virus. The primary tumor tissues lacked mouse DNA as determined by PCR for intracisternal A type particle DNA, thus avoiding one of the limitations of studying xenografts. We show that neither XMRV nor a closely related virus was present in primary prostate tissue of patient CWR22. Our findings confirm and reinforce the conclusion that XMRV is a recombinant laboratory-generated mouse virus that is highly adapted for human prostate cancer cells

    Prostate Cancer-Specific and Potent Antitumor Effect of a DD3-Controlled Oncolytic Virus Harboring the PTEN Gene

    Get PDF
    Prostate cancer is a major health problem for men in Western societies. Here we report a Prostate Cancer-Specific Targeting Gene-Viro-Therapy (CTGVT-PCa), in which PTEN was inserted into a DD3-controlled oncolytic viral vector (OV) to form Ad.DD3.E1A.E1B(Δ55)-(PTEN) or, briefly, Ad.DD3.D55-PTEN. The woodchuck post-transcriptional element (WPRE) was also introduced at the downstream of the E1A coding sequence, resulting in much higher expression of the E1A gene. DD3 is one of the most prostate cancer-specific genes and has been used as a clinical bio-diagnostic marker. PTEN is frequently inactivated in primary prostate cancers, which is crucial for prostate cancer progression. Therefore, the Ad.DD3.D55-PTEN has prostate cancer specific and potent antitumor effect. The tumor growth rate was almost completely inhibited with the final tumor volume after Ad.DD3.D55-PTEN treatment less than the initial volume at the beginning of Ad.DD3.D55-PTEN treatment, which shows the powerful antitumor effect of Ad.DD3.D55-PTEN on prostate cancer tumor growth. The CTGVT-PCa construct reported here killed all of the prostate cancer cell lines tested, such as DU145, 22RV1 and CL1, but had a reduced or no killing effect on all the non-prostate cancer cell lines tested. The mechanism of action of Ad.DD3.D55-PTEN was due to the induction of apoptosis, as detected by TUNEL assays and flow cytometry. The apoptosis was mediated by mitochondria-dependent and -independent pathways, as determined by caspase assays and mitochondrial membrane potential

    Panel 6 : Vaccines

    Get PDF
    Objective. To review the literature on progress regarding (1) effectiveness of vaccines for prevention of otitis media (OM) and (2) development of vaccine antigens for OM bacterial and viral pathogens. Data Sources. PubMed database of the National Library of Science. Review Methods. We performed literature searches in PubMed for OM pathogens and candidate vaccine antigens, and we restricted the searches to articles in English that were published between July 2011 and June 2015. Panel members reviewed literature in their area of expertise. Conclusions. Pneumococcal conjugate vaccines (PCVs) are somewhat effective for the prevention of pneumococcal OM, recurrent OM, OM visits, and tympanostomy tube insertions. Widespread use of PCVs has been associated with shifts in pneumococcal serotypes and bacterial pathogens associated with OM, diminishing PCV effectiveness against AOM. The 10-valent pneumococcal vaccine containing Haemophilus influenzae protein D (PHiD-CV) is effective for pneumococcal OM, but results from studies describing the potential impact on OM due to H influenzae have been inconsistent. Progress in vaccine development for H influenzae, Moraxella catarrhalis, and OM-associated respiratory viruses has been limited. Additional research is needed to extend vaccine protection to additional pneumococcal serotypes and other otopathogens. There are likely to be licensure challenges for protein-based vaccines, and data on correlates of protection for OM vaccine antigens are urgently needed. Implications for Practice. OM continues to be a significant health care burden globally. Prevention is preferable to treatment, and vaccine development remains an important goal. As a polymicrobial disease, OM poses significant but not insurmountable challenges for vaccine development.Peer reviewe

    Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution

    Get PDF
    Integrating the plasma core performance with an edge and scrape-off layer (SOL) that leads to tolerable heat and particle loads on the wall is a major challenge. The new European medium size tokamak task force (EU-MST) coordinates research on ASDEX Upgrade (AUG), MAST and TCV. This multi-machine approach within EU-MST, covering a wide parameter range, is instrumental to progress in the field, as ITER and DEMO core/pedestal and SOL parameters are not achievable simultaneously in present day devices. A two prong approach is adopted. On the one hand, scenarios with tolerable transient heat and particle loads, including active edge localised mode (ELM) control are developed. On the other hand, divertor solutions including advanced magnetic configurations are studied. Considerable progress has been made on both approaches, in particular in the fields of: ELM control with resonant magnetic perturbations (RMP), small ELM regimes, detachment onset and control, as well as filamentary scrape-off-layer transport. For example full ELM suppression has now been achieved on AUG at low collisionality with n  =  2 RMP maintaining good confinement HH(98,y2)0.95{{H}_{\text{H}\left(98,\text{y}2\right)}}\approx 0.95 . Advances have been made with respect to detachment onset and control. Studies in advanced divertor configurations (Snowflake, Super-X and X-point target divertor) shed new light on SOL physics. Cross field filamentary transport has been characterised in a wide parameter regime on AUG, MAST and TCV progressing the theoretical and experimental understanding crucial for predicting first wall loads in ITER and DEMO. Conditions in the SOL also play a crucial role for ELM stability and access to small ELM regimes

    Real-time plasma state monitoring and supervisory control on TCV

    Get PDF
    In ITER and DEMO, various control objectives related to plasma control must be simultaneously achieved by the plasma control system (PCS), in both normal operation as well as off-normal conditions. The PCS must act on off-normal events and deviations from the target scenario, since certain sequences (chains) of events can precede disruptions. It is important that these decisions are made while maintaining a coherent prioritization between the real-time control tasks to ensure high-performance operation. In this paper, a generic architecture for task-based integrated plasma control is proposed. The architecture is characterized by the separation of state estimation, event detection, decisions and task execution among different algorithms, with standardized signal interfaces. Central to the architecture are a plasma state monitor and supervisory controller. In the plasma state monitor, discrete events in the continuous-valued plasma state are modeled using finite state machines. This provides a high-level representation of the plasma state. The supervisory controller coordinates the execution of multiple plasma control tasks by assigning task priorities, based on the finite states of the plasma and the pulse schedule. These algorithms were implemented on the TCV digital control system and integrated with actuator resource management and existing state estimation algorithms and controllers. The plasma state monitor on TCV can track a multitude of plasma events, related to plasma current, rotating and locked neoclassical tearing modes, and position displacements. In TCV experiments on simultaneous control of plasma pressure, safety factor profile and NTMs using electron cyclotron heating (ECH) and current drive (ECCD), the supervisory controller assigns priorities to the relevant control tasks. The tasks are then executed by feedback controllers and actuator allocation management. This work forms a significant step forward in the ongoing integration of control capabilities in experiments on TCV, in support of tokamak reactor operation

    Not feeling ready to go home: a qualitative analysis of chronically ill patients' perceptions on care transitions

    Get PDF
    Quality problem Unplanned hospital readmissions frequently occur and have profound implications for patients. This study explores chronically ill patients' experiences and perceptions of being discharged to home and then acutely readmitted to the hospital to identify the potential impact on future care transition interventions. Initial assessment and implementation Twenty-three semistructured interviews were conducted with chronically ill patients who had an unplanned 30-day hospital readmission at a university teaching hospital in the Netherlands. Choice of solution A constructive grounded theory approach was used for data analysis. Evaluation The core category identified was readiness for hospital discharge,' and the categories related to the core category are experiencing acute care settings' and outlook on the recovery period after hospital discharge.' Patients' readiness for hospital discharge was influenced by the organization of hospital care, patients' involvement in decision-making and preparation for discharge. The experienced difficulties during care transitions might have influenced patients' ability to cope with challenges of recovery and dependency on others. Lessons learned The results demonstrated the importance of assessing patients' readiness for hospital discharge. Health care professionals are recommended to recognize patients and guide them through transitions of care. In addition, employing specifically designated strategies that encourage patient-centered communication and shared decision-making can be vital in improving care transitions and reduce hospital readmissions. We suggest that health care professionals pay attention to the role and capacity of informal caregivers during care transitions and the recovery period after hospital discharge to prevent possible postdischarge problems
    corecore