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Abstract

Objective. To review the literature on progress regarding (1)
effectiveness of vaccines for prevention of otitis media (OM)
and (2) development of vaccine antigens for OM bacterial
and viral pathogens.

Data Sources. PubMed database of the National Library of
Science.

Review Methods. We performed literature searches in
PubMed for OM pathogens and candidate vaccine antigens,
and we restricted the searches to articles in English that
were published between July 2011 and June 2015. Panel
members reviewed literature in their area of expertise.

Conclusions. Pneumococcal conjugate vaccines (PCVs) are
somewhat effective for the prevention of pneumococcal
OM, recurrent OM, OM visits, and tympanostomy tube
insertions. Widespread use of PCVs has been associated
with shifts in pneumococcal serotypes and bacterial patho-
gens associated with OM, diminishing PCV effectiveness
against AOM. The 10-valent pneumococcal vaccine contain-
ing Haemophilus influenzae protein D (PHiD-CV) is effective
for pneumococcal OM, but results from studies describing
the potential impact on OM due to H influenzae have been
inconsistent. Progress in vaccine development for H influen-
zae, Moraxella catarrhalis, and OM-associated respiratory
viruses has been limited. Additional research is needed to
extend vaccine protection to additional pneumococcal sero-
types and other otopathogens. There are likely to be licen-
sure challenges for protein-based vaccines, and data on
correlates of protection for OM vaccine antigens are
urgently needed.

Implications for Practice. OM continues to be a significant
health care burden globally. Prevention is preferable to
treatment, and vaccine development remains an important
goal. As a polymicrobial disease, OM poses significant but
not insurmountable challenges for vaccine development.
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A
cute otitis media (AOM) is one of the most com-

monly diagnosed childhood infections and a leading

diagnosis for the prescription of antibiotics.1 The 3

primary bacterial pathogens that cause AOM are Streptococcus

pneumoniae, nontypeable Haemophilus influenzae (NTHi), and

Moraxella catarrhalis. Virtually all cases of AOM occur fol-

lowing or concurrent with a symptomatic viral respiratory tract

infection.2 The etiology of otitis media (OM) is continually

undergoing changes associated with widespread use of pneu-

mococcal conjugate vaccines (PCVs), which alter nasopharyn-

geal colonization patterns, particularly the distribution of

pneumococcal serotypes. In clinical practice, AOM is managed

empirically. Controversies exist regarding the use of antibiotics

for treatment of OM, and antibiotic resistance is a major

public health concern. Thus, new methods to prevent OM and
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its associated sequelae are urgently needed. Vaccines represent

a promising approach to reduce the burden of OM globally.

However, OM is a polymicrobial disease and poses significant

challenges for vaccine development. The goal of this report is

to provide an update on the role of conjugate and influenza

virus vaccines in preventing OM and progress toward identifi-

cation of new vaccine targets over the past 4 years.

Methods

The PubMed database of the National Library of Medicine

was used to search for articles related to vaccines and vaccine

antigens for OM. The PubMed literature search was restricted

to articles published between July 2011 and June 2015.

Keywords included Streptococcus pneumoniae, Haemophilus

influenzae, or Moraxella catarrhalis and vaccine, vaccine

antigens, and OM. Searches were also conducted on each

otopathogen and vaccine antigen discussed in the 2011 report

of the 10th Research Conference on Recent Advances in

Otitis Media.3 Original research, reviews, and editorials were

included, and searches were limited to articles published in

English. Panel members reviewed literature in their area of

expertise, and articles were included if they were judged to

be scientifically sound; explicit inclusion, exclusion, and

quality criteria were not used to select articles. Panel mem-

bers met and discussed recent advances in the field and an

early draft of the report at the Postsymposium Research

Conference to the 18th International Symposium on Recent

Advances in Otitis Media. The final draft was reviewed and

approved by all panel members.

Discussion

Etiology of OM

Culture of middle ear fluid has been the gold standard for

determining AOM etiology. Table 1 shows results of cul-

tures of middle ear fluid obtained by tympanocentesis or

spontaneous perforation of the tympanic membrane.

Biofilms are communities of bacteria encased in a matrix

present in the middle ear.4 Effusions recovered from the

middle ear are often sterile by culture but contain abundant

viable pathogens within biofilms, which can be detected by

polymerase chain reaction.5,6 Studies that use polymerase

chain reaction to detect pathogens in middle ear fluids

detect pathogens at higher proportions when compared with

studies that use culture alone, particularly in the case of

NTHi and M catarrhalis (Table 1).7 Recognition of the role

of biofilms in OM has important implications for under-

standing the etiology of OM and in designing more effective

therapies as well as rational vaccine development strategies.

Relying solely on culture as the end point in clinical trials

of OM will assess only a subset of cases, and studies to

assess vaccine efficacy and effectiveness should take into

account the role of biofilms and culture-negative OM.

Effectiveness of Conjugate Vaccines for OM

Since 2000, many countries have implemented vaccine pro-

grams using the 7-valent PCV (PCV7; Prevnar). Earlier

studies of PCV7 demonstrated a reduction in OM and naso-

pharyngeal colonization by the 7 pneumococcal vaccine ser-

otypes, replacement by nonvaccine serotypes, and increases

in the proportion of OM cases due to NTHi and M catarrha-

lis.3,8-12 Since 2011, data are available that depict trends

from regions where the vaccine has recently been intro-

duced. Increasing use of the 13-valent PCV (PCV13) and

the 10-valent pneumococcal vaccine with H influenzae pro-

tein D (Synflorix; PHiD-CV) as the carrier molecule has

resulted in additional changes in nasopharyngeal coloniza-

tion patterns and the distribution of pathogens causing

OM.13

PCV7 and PCV13. An evaluation of 5 PCV vaccine trials

with OM end points showed a combined vaccine efficacy

against vaccine serotypes of 60%, an overall decrease of

pneumococcal AOM of 25% to 52%, and an overall reduc-

tion in all cause AOM cases of 20.4% to 7%.14

Observational studies demonstrate effectiveness of PCV

Table 1. Etiology of Otitis Media Based on Culture and PCR of Middle Ear Fluids from Studies Published from July 2011 to June 2015.

Middle Ear Fluid Culture (MEF Positive, %) Middle Ear Fluid PCR (MEF Positive, %)

Study Site Diagnosisa MEF, n S pneumo NTHi Mcat S pneumo NTHi Mcat

US104 OME 169 ND ND ND 12 47 34

US104 AOM 38 ND ND ND 6 76 30

Spain12 Complicated OM 105 20 42 2 39 61 ND

Russia105 AOM 541 20 3 2 ND ND ND

US106 AOM 530 29 37 20 ND ND ND

New Zealand7 Complicated OM 325 8 19 8 23 43 56

Israel16 Complicated OM 295 20 12 1 ND ND ND

Costa Rica17 AOM and recurrent AOM 456 19 25 5 ND ND ND

Abbreviations: AOM, acute otitis media; Mcat, Moraxella catarrhalis; MEF, middle ear fluid; ND, no data; NTHi, nontypeable Haemophilus influenzae; OM, otitis

media; OME, otitis media with effusion; PCR, polymerase chain reaction; S pneumo, Streptococcus pneumoniae.
aComplicated OM includes recurrent OM, treatment failure, chronic OM, and OME.
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vaccines. A study in Israel examined AOM incidence from

July 2004 to June 2013 and documented changes following

the stepwise introduction of PCV7 (July 2009) and PCV13

(November 2010).15 Incidence of AOM episodes caused by

S pneumoniae decreased 77%, and there was a nonsignifi-

cant increase in AOM caused by nonvaccine serotypes

when the PCV13 period was compared with the pre-PCV7

period.15 A retrospective study of AOM in Israel showed

that S pneumoniae was present in a significantly higher pro-

portion of middle ear fluids when unvaccinated children

were compared with PCV7- or PCV13-vaccinated children

(69% vs 59% and 50%, respectively).16 A Costa Rican

study showed a lower frequency of S pneumoniae AOM

(17.1% vs 25.5%) and a higher frequency of AOM due to

NTHi (27.4% vs 20.8%) in PCV-vaccinated versus unvacci-

nated children.17

Marom et al analyzed an insurance claims database of a

large managed health care plan in the United States from

2001 to 2011.18 There was a trend toward reduction in

AOM rates per child-year from 2001 to 2011 in children \2

years of age. These trends accelerated in 2010 in association

with the introduction of PCV13. A 19% decline in tympa-

nostomy tube insertion was also observed in 2010 to 2011.

However, tympanic membrane perforations increased from

2001 to 2011.18 Health registry data on children enrolled in

FinOM study demonstrated a 34% (95% confidence inter-

val, 1%-52%) reduction in tympanostomy tube placement in

the PCV-vaccinated group for children aged 2 to 5 years but

no reduction in children aged 6 to 13 years.19 These data

suggest that prevention of AOM, specifically early episodes,

leads to reductions in complex and persistent OM as mea-

sured by tympanostomy tube insertion. Acute mastoiditis—a

complication of OM that initially decreased after introduc-

tion of PCV7—increased with the emergence of pneumo-

coccal serotype 19A.20-22 Kaplan et al recently reported

data suggesting that mastoiditis due to serotype 19A has

begun to decline in the PCV13 era.23 PCV13 was intro-

duced relatively recently, and our understanding of the

global impact of PCV13 on OM and complications of dis-

ease is still incomplete.

Pneumococcal isolates were collected from children

undergoing myringotomy or tympanostomy tube insertion at

8 US children’s hospitals; these data indicated a decline in

PCV13 serotypes (mostly 19A) and that non-PCV13 sero-

types represented ~60% of isolates collected between 2011

and 2013.23 In Australia, serotype 19A was the most

common serotype isolated from middle ear fluids after intro-

duction of PCV7.24 PCVs have also been associated with

changes in the prevalence of antimicrobial resistance. In

most studies, an overall increase in antibiotic resistance has

been seen in association with PCV7 immunization that, to a

large extent, is due to the increased prevalence of strains of

serotype 19A.24-27

PCV7 and PCV13 mount effective and functional

responses in infants and children.28 Although some studies

suggest that otitis-prone infants/children may mount a less

effective response to the vaccine than non-otitis-prone

children,16 other studies have shown equally robust antibody

responses to PCVs in both groups.29-32

PHiD-CV. A phase 3 double-blind study of 20,000 South

American infants showed per-protocol efficacy of PHiD-CV

against pneumococcal AOM and vaccine serotype pneumo-

coccal AOM of approximately 56% and 67%, respectively,

with an overall decrease of 16% in AOM incidence from

any cause.33,34 Leach et al studied indigenous Australian

children vaccinated with PCV7 (2008 and 2009 birth

cohorts) or PHiD-CV (2010 and 2010 birth cohorts) and fol-

lowed them for subsequent OM.35 More than 90% of the

children had some form of OM. The authors observed a sig-

nificant reduction in suppurative OM in PHiD-CV- versus

PCV7-vaccinated children (51% vs 39%, P = .0004). Subtle

differences between the PCV7 and PHiD-CV cohorts and

the use of historical controls limit the evaluation of vaccine

efficacy; however, the study demonstrates that indigenous

Australian children suffer a disproportionate amount of ear

disease despite current strategies for prevention of OM. The

POET study examined an 11-valent PCV with a protein D

carrier and demonstrated efficacy against OM due to S

pneumoniae and NTHi.36 While recent work indicates that

the protein D component of PHiD-CV induces a strong anti-

body response, other studies have raised questions about the

ultimate ability of a protein D–based vaccine to protect

against NTHi disease, as described below.

The protein D component of the vaccine was demonstrated

to be very immunogenic in Chilean,37 Japanese,38 and Mexican

infants39 when administered as part of a normal childhood vac-

cination series. Studies in Korean and Taiwanese infants exam-

ined the immunogenicity of PHiD-CV when coadministered

with H influenzae type b vaccine and reported excellent immu-

nogenicity of protein D.40,41 Moreover, protein D has excellent

immunogenicity in both premature and term infants when admi-

nistered on a normal infant schedule.42 A more recent report

described the relative immunogenicity of PHiD-CV in Dutch

children when coadministered with either DTPa-IPV-Hib

(Pediacel) or DTPa-HBV-IPV/Hib (Infanrix) and found excel-

lent immunogenicity of the protein D component of the vaccine

in both groups.43 Studies examined the ability of immunization

with PHiD-CV to induce an anamnestic antibody response fol-

lowing boosting,44 the immunogenicity of booster and catch-up

doses of the vaccine,45 and the effect of variation in age on the

immunogenicity of individual booster doses.46 In each instance,

the protein D component of the vaccine demonstrated excellent

immunogenicity.

A study of Dutch children compared the ability of immu-

nization with PHiD-CV and PCV7 to prevent colonization

with NTHi. PHiD-CV immunization had no demonstrable

effect on the colonization, acquisition, or bacterial density

of NTHi compared with PCV7.47 Of concern, 3 of the 16

NTHi strains recovered from children in Australia strains

completely lacked the gene that encodes protein D. No sta-

tistically significant reduction in AOM due to NTHi was

observed in the Clinical Otitis Media and Pneumonia

Study.34 Collectively, these studies indicate that a protein
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D–based vaccine might be less broadly protective for OM

due to NTHi than originally envisioned.

Effectiveness of Viral Vaccines for OM

Respiratory viral infection is one of the most important pre-

cipitating factors leading to AOM.1,2 Therefore, vaccines

that prevent respiratory viral infections would likely prevent

AOM. However, influenza is the only OM-associated

respiratory virus for which there is a licensed vaccine.

Influenza vaccines may fail to prevent influenza infection

due to mismatches with circulating influenza strains; it has

been suggested that while nonneutralizing influenza vac-

cines may fail to prevent influenza infection, they could

protect from secondary bacterial infections such as OM.48

Heikkinen et al used pooled data from randomized con-

trolled trials of influenza virus vaccines and reported that

during influenza seasons, the efficacy of the live attenuated

influenza vaccine (LAIV) against all-cause AOM was 7.5%

when compared with placebo.49 They concluded that the

combination of LAIVs and PCVs could further reduce the

incidence of AOM in children. However, in a small study in

92 children, pandemic influenza A/H1N1 vaccine did not

reduce the rate of AOM as compared with that of unvacci-

nated children.50 In 2015, the Cochrane Collaboration con-

cluded that overall influenza vaccination results in a small

reduction in AOM and that the benefits may not justify the

use of influenza vaccine as a strategy to prevent AOM due

to vaccine safety concerns.51

Mina et al reported that mice inoculated with LAIV, which

causes mild infection of the nasopharynx, had decreased pneu-

mococcal and staphylococcal clearance from the nasopharynx

and increased bacterial colonization rates.52 LAIV increased

transmigration to and persistence of pneumococci within the

middle ear.53 The authors suggest that live attenuated vaccine

may increase risk of AOM. More data are needed to determine

whether these data can be extrapolated to humans.

Seppälä et al reported reduction in AOM rates in children

after oral live attenuated poliovirus vaccination, which

could be due to the prevention of viral infections caused by

nonpolio viruses.54 However, large-scale impact of the oral

polio vaccine on burden of AOM in children is unknown.

Progress in Identification of New Vaccine
Candidates

S pneumoniae

Due to limitations of PCVs,55 there has been considerable

interest in the development of pneumococcal vaccines that

target common and conserved surface proteins that could

supplement or eventually replace PCVs. In theory, protein-

based vaccines would be simpler and cheaper to produce

than conjugate vaccines. Candidate pneumococcal antigens

and vaccines are summarized in Table 2.

Several pneumococcal protein antigens have been studied

in animal models. Immunization with pneumococcal surface

adhesion A (PsaA) protected against OM in a murine

model.56 A fusion of PsaA and nontoxic pneumolysin (Ply)

produced a more robust Th1/Th17 mucosal response than

each protein alone or immunization with a mix of the 2 pro-

teins.57 A fusion protein consisting of the choline binding

protein A peptide and L460D, a nontoxic pneumolysoid,

was shown to be more broadly protective against pneumo-

coccal disease than pneumolysoid alone in mice, with a

reduction in OM from 55% to 25%.58 Two conserved pro-

teins of unknown function, SP1298 and SP2205, were not

directly tested for prevention of AOM but were used to

immunize mice, and they showed a reduced pneumococcal

load in the nasopharynx, lungs, and blood.59 Immunization

of chinchillas with the chimeric protein RrgB321, a compo-

nent of pneumococcal pilus 1, did not protect against

experimental OM, although a delay in development of dis-

ease was seen.60

Some laboratories have attempted to develop whole-cell

pneumococcal vaccines. A live whole-cell vaccine lacking

FtzY (to stop multiplication of the bacteria) produced

serotype-independent protection against OM that was

CD41 T cell dependent.61 A whole-cell vaccine composed

of an ethanol-killed capsule-deficient S pneumoniae mutant

provided protection against colonization with serotype 4 and

19F strains.62

An inactivated whole-cell vaccine that has undergone a

phase 1 clinical study in healthy US adults demonstrated an

acceptable safety and reactogenicity profile along with

encouraging immune responses.63 This vaccine is appealing

in that it incorporates numerous pneumococcal antigens

and, in preclinical models, demonstrates 2 mechanisms of

protection: protection against nasopharyngeal carriage via a

T cell–mediated mechanism and protection against pneumo-

coccal disease via humoral antibody responses.64 GSK

Biologicals is developing a novel pneumococcal vaccine

that involves the addition of 2 pneumococcal proteins to its

PCV10 Synflorix: pneumococcal histidine triad protein D

(PhtD) and pneumolysin.65 This vaccine candidate has

undergone a number of clinical trials and is currently being

evaluated in infants in the Gambia for an impact on carriage

of nonvaccine serotypes.66 GSK is also evaluating these 2

proteins for their ability to vaccinate children against

AOM.67 Sanofi Pasteur is developing a novel pneumococcal

vaccine that includes 3 proteins: PhtD, pneumolysoid, and

pneumococcal choline binding protein A. This candidate

has also been assessed in a number of trials, including in a

small study in Bangladeshi infants where the vaccine was

found to be immunogenic but did not appear to affect naso-

pharyngeal carriage.68 Finally, Genocea has used its antigen

discovery platform to identify T-cell antigens associated

with protection against pneumococcal nasopharyngeal car-

riage and has initiated clinical studies to assess a trivalent

protein vaccine candidate.69

Ren et al and Xu et al investigated natural antibodies to

pneumococcal proteins in children.70,71 They observed that

the titers against PhtD, pneumococcal choline binding pro-

tein A, and Ply were significantly lower in serum and

middle ear fluid in OM prone as compared with non-OM-

prone children.56,70 Verhaegh et al screened antibodies

Pettigrew et al S79



against 18 pneumococcal proteins, including PhtD and Ply,

and showed that there were no differences in IgG, IgA, and

IgM levels when comparing children with recurrent AOM

and chronic OM with effusion.72 Another study demon-

strated that otitis-prone children have a lower percentage of

memory B cells and immunoglobulin production to pneu-

mococcal protein antigens, such as pneumolysin and PhtD/

PhtE, when compared with non-otitis-prone children.73

Nontypeable H influenzae

PCVs have been associated with an increased proportion of

disease associated with NTHi strains.74 An effective NTHi

vaccine candidate will be surface exposed, conserved in het-

erologous strains, immunogenic, and expressed during the

disease state.75 A number of vaccine candidates have been

investigated since 2011 and are summarized in Table 3.

Kodama and colleagues tested the efficacy of nasal vac-

cination with outer membrane protein 6 (P6) in combination

with the chemokine CCL20 in a murine model.76 The addi-

tion of CCL20 resulted in significant increases in IgA and

IgG titers and a subsequent increase in nasopharyngeal

clearance of NTHi. The same group tested the efficacy of

fms-like tyrosine kinase receptor 3 ligand as a mucosal

adjuvant with P6 protein. This pairing also increased dendri-

tic cell recruitment and nasopharyngeal clearance of

NTHi.77,78 Han and colleagues compared the P6 response in

mice when delivered with macrophage-derived chemokine

or with Freund’s adjuvant. Combination of P6 with

macrophage-derived chemokine increased serum IgG titers;

however, there was no statistical difference in survival rate

when the 2 adjuvants were compared.79 Hybridoma cell

lines producing monoclonal antibodies against P6 have been

developed, although efficacy has not been tested to date.80

The outer membrane protein P5 is highly conserved in

all NTHi strains sequenced81-83 and has been shown to be

an effective vaccine candidate in experimental models of

OM.84 Host responses to immunization with P5 have been

described in transcutaneous immunization of NTHi-infected

chinchillas with a chimeric immunogen that includes P5 and

the type IV pilus PilA.84 The authors observed a significant

reduction in the signs of OM and resolution of mucosal bio-

films when animals were immunized with the P5 chimeric

immunogen.

Additional work has focused on NTHi protein E and pro-

tein F. Singh and colleagues demonstrated that peptides cor-

responding to surface-exposed regions of protein E were

immunogenic in mice and that antibodies to these peptides

bound protein E on the bacterial cell surface.85 Mice immu-

nized with a truncated form of the highly conserved protein

F adhesin cleared NTHi infections significantly earlier than

mice treated with a control peptide.86

Serum antibody responses were measured to outer mem-

brane proteins D, P6, and 26 of NTHi in otitis-prone and

non-otitis-prone children. Otitis-prone children mount less

IgG serum antibody response toward all 3 protein antigens,

possibly linked to recurrent infections.87 Recent work

defined outer membrane protein 26 T- and B-cell epitopes,

which will improve existing NTHi vaccines.88

Winter and coworkers examined the ability of antisera

raised against purified high molecular weight (HMW) pro-

teins HMW1/HMW2 or recombinant Hia proteins to med-

iate opsonophagocytic killing of a large panel of NTHi

strains.89 The 3 HMW1/HMW2 antisera mediated killing of

48 of 65 HMW1/HMW2-expressing strains, and the 2 Hia

antisera mediated killing of 15 of 24 Hia-expressing strains.

Thus, a vaccine formulated with a limited number of

HMW1/HMW2 and Hia proteins might provide protection

against disease caused by most NTHi strains.

Davis and coworkers reported on the prevalence, distri-

bution, and sequence diversity of hmwA among a large

Table 2. Protein Vaccine Antigens of Streptococcus pneumoniae at Various Stages of Development.

Antigen Molecular Mass, kDa Putative Function and Other Features Referencea

Ply/pneumolysoid 53 Cholesterol-dependent toxin 57, 58

PhtD; PhtE 95; 115 Histidine-triad proteins 70, 71

PcpA 79 Choline binding protein, adhesin 70, 107

NanA 110 Neuraminidase A, sialidase activity No new information

PsaA 35 Manganese ABC transport substrate binding protein 57, 70, 71

CbpA/PspC 79; smaller fragments

for fusion also being used

Choline binding protein, binds complement

factors and polymeric IG receptor

58

SP1298b 35 DHH subfamily 1 protein, cyclic-AMP

phosphodiesterase

59

SP2205b 73 DHH subfamily 1 protein, cyclic-AMP

phosphodiesterase

59

Pilus-1 Adherence 60

Whole-cell vaccine Not applicable No publications,

under development

aReferences from July 2011 to June 2015.
bNewly identified vaccine antigen from previous report.
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collection of commensal and OM derived NTHi.90hmwA

was detected in 61% of NTHi and was significantly more

prevalent among OM isolates than commensal isolates.

Almost all of the hmwA-positive isolates possessed 2 hmw

loci. The authors also determined the DNA sequence of the

hmwA binding region of 33 isolates and found that the

average amino acid identity across all hmwA sequences

was 62%. Phylogenetic analyses of the hmwA binding

revealed 4 distinct sequence clusters, and the majority of

hmwA sequences (83%) belonged to 1 of 2 dominant

sequence clusters. These data would be important to con-

sider in any vaccine development efforts involving the

HMW1/HMW2 proteins.

M catarrhalis

Prevention of bacterial OM will also require vaccines

directed at M catarrhalis. Several surface proteins of M cat-

arrhalis are in various stages of development as vaccine

antigens91 and are summarized in Table 4. Since the previ-

ous report, a promising M catarrhalis antigen, substrate-

binding protein, has been identified.92 Immunization of

mice with substrate-binding protein induces enhanced

clearance in the mouse pulmonary clearance model.92

Smidt et al93 conducted a comprehensive antigen screen to

identify potential M catarrhalis vaccine candidates. Three

antigens induced significantly faster clearance than

OmpCD or adjuvant alone in a mouse pulmonary clearance

model. The most efficacious antigen, Msp22, was deter-

mined to be a heme binding protein.93 Immunization with

a polypeptide shared by filamentous hemagglutinin-like

proteins MhaB1 and MhaB2 induced antibodies that inter-

fered with M catarrhalis colonization of the chinchilla

nasopharynx.94 Advances in characterization of other puta-

tive vaccine antigens include oligopeptide permease A93,95

and detoxified lipooligosaccharide.96,97

As described in the 2011 report, the lack of good animal

models for M catarrhalis remains a challenge to vaccine

development.3 The mouse pulmonary clearance model is the

most widely used model for assessing vaccine antigens of M

catarrhalis. The model yields reproducible results, and immu-

nization with selected antigens induces enhanced clearance,

which has been interpreted as a protective response. However,

the model does not simulate human disease, and induction of

enhanced clearance in the mouse model has not yet been cor-

related with protection in humans. M catarrhalis is cleared

readily from the middle ear of chinchillas after direct instilla-

tion. Since the last report, 3 studies have successfully used the

chinchilla model to study M catarrhalis colonization and/or

infection. As part of a study of global transcriptome expression

by M catarrhalis, Hoopman et al inoculated chinchillas intra-

nasally and demonstrated nasopharyngeal colonization that

persisted for 72 hours.98 Brockson et al demonstrated that

intranasal coinfection with respiratory syncytial virus and

NTHi predisposed to M catarrhalis induced ascending OM in

the chinchilla.99M catarrhalis was cultured from the nasophar-

ynx and middle ear in the majority of animals for up to 17

days. Finally, Shaffer et al demonstrated nasopharyngeal colo-

nization of chinchillas by M catarrhalis for up to 7 days as

part of evaluating MhaB1 and MhaB2 as potential vaccine

antigens.94 These approaches show promise in testing M catar-

rhalis vaccine antigens in the chinchilla, which has been a

valuable model in evaluating vaccine antigens of NTHi and S

pneumoniae.

Vaccine Delivery Methods

Multiple studies utilize a subcutaneous route to explore

novel vaccine candidates for the prevention of OM.58,92,94,97

The ability to deliver bacterial antigens for the prevention

of OM via an intranasal route also continues to garner

momentum.56,61,83,93 As an example, Xu et al investigated

intranasal immunization using PsaA protein of S pneumo-

niae delivered with chitosan in the form of nanoparticles

and demonstrated greater protection against AOM following

middle ear challenge with a serotype 14 pneumococcus

compared with delivery of naked PsaA.56 There has also

been a great deal of recent activity in the assessment of

alternative delivery methods, including transcutaneous and

maternal immunization for OM vaccine candidates.

Transcutaneous

Since 2011, there have been 3 reports of transcutaneous

immunization to prevent OM due to NTHi. Novotny et al

Table 3. Protein Vaccine Antigens of Haemophilus influenzae at Various Stages of Development.

Antigen Molecular Mass, kDa Putative Function and Other Features Referencea

Protein D 42 Adherence to epithelial cells 42-47

Protein E 16 Multifunctional adhesin 72, 108

Protein F 30 Binds vitronectin and laminin 109, 110

OMP P5 27 Binds factor H, adherence to epithelial cells 84

PilA 15 Twitching motility, adherence, competence, biofilm formation 84

OMP P6 16 Structural role 77-80

OMP26 26 Skp family of translocation proteins 88

HMW1; HMW2 125; 120 Adherence 89

Hia 114 Adherence 89

aReferences from July 2011 to June 2015.
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immunized chinchillas by rubbing a chimeric OMP P5 and

type IV pili immunogen onto the inner surface of their outer

ears.84,100 The authors demonstrated protective efficacy

against development of OM and rapid resolution of estab-

lished disease.84,100 Novotny et al combined the chimeric

OMP P5 and type IV pili immunogen and a bacterial DNA-

binding protein, integration host factor, and demonstrated

that this combination of immunogens resulted in signifi-

cantly earlier eradication of NTHi from planktonic and

adherent populations in the middle ear, disruption of muco-

sal biofilms, and rapid resolution of signs of disease as com-

pared with controls.101

Maternal Immunization

Immunization of pregnant women has been proposed as a

potentially effective immunization strategy to protect infants

from OM. van Santen et al reported that maternal influenza

vaccination and infant receipt of PCV confer greater protec-

tion from OM than PCV alone.102 Conversely, Daly and

colleagues reported discouraging results of a randomized

trial of pregnant women given either an investigational 9-

valent PCV vaccine or a placebo in the last trimester of

pregnancy; all infants received Prevnar at 2, 4, 6, and 12

months.103 Immunizing pregnant women with PCV-9

increased infants’ risk of AOM in the first 6 months of life.

The authors attributed this outcome to decreased infant anti-

body responses to the vaccine serotypes delivered in

Prevnar due to dampening by high levels of passively

acquired pneumococcal antibodies and/or altered B lympho-

cyte immune responses when exposed to these polysacchar-

ide antigens in utero.

Implications for Practice

Several studies demonstrate the positive impact of PCV7,

PCV13, and PHiD-CV on pneumococcal OM, recurrent

OM, OM visits, and tympanostomy tube insertions follow-

ing introduction. While effective for pneumococcal OM,

PHiD-CV may be less broadly protective for NTHi than

originally envisioned. Neither PCV7 nor PCV13 appears to

have substantial impact on development of complex OM in

indigenous Australian children. There are limitations to the

overall impact of PCVs because of serotype replacement.55

Emerging S pneumoniae serotypes prevalent as causes of

OM are 35B, 23A, 23B, 15A, 15B/C, 16F, and 21. A 15-

valent PCV is in development, but there are technical lim-

itations to the number of serotypes that can be included in

vaccines, and the complexity of manufacturing has resulted

in relatively high prices for multivalent PCVs that make

them unaffordable for many developing countries. Of con-

cern, there are significant challenges to licensure of new

pneumococcal vaccines; PCV13 and PHiD-CV were

approved on the basis of immunologic noninferiority and

safety as compared with PCV7.55 Licensing criteria and cor-

relates of protection for protein-based and whole-cell vac-

cines have not been defined.

Future efforts are needed to develop more effective influ-

enza vaccines with robust, long-lasting cross-strain protec-

tion. Since the last review in 2011, there are no additional

studies on the use of passive or active immune prophylaxis

against respiratory syncytial virus infection for protection

against AOM. Research is needed to develop vaccines against

other respiratory viruses, including rhinoviruses, respiratory

syncytial virus, parainfluenza viruses, and adenoviruses.

Table 4. Vaccine Antigens of Moraxella catarrhalis at Various Stages of Development.

Antigen Molecular Mass, kDa Putative Function and Other Features Referencea

MID/Hag 200 Adhesin, binds IgD, hemagglutinin 111

MchA1, MchA2; MhaB1, MhaB2 184; 201 Filamentous hemagglutinin-like adhesin 94

McmA 110 Metallopeptidase-like adhesin

OppA ~80 Oligopeptide permease 93, 95

Msp 75 ~75 Homology to succinic dehydrogenase

McaP 66 Adhesin and phospholipase B

UspA2 62 (oligomer) Binds complement, vitronectin, and laminin 112, 113

OMP E 50 Putative fatty acid transport

OMP CD 45 OMP A–like protein, binds mucin, adhesin 93

M35 ~35 Porin, conserved with one variable loop 114

SBP2b ~30 Substrate binding protein of an ABC transporter 92

OMP G1a ~29 Lipoprotein, putative copper transport protein

OMP G1b ~29 Surface molecule

OlpA 24 Homologous with Neisseria Opa adhesins 115

Msp 22 ~22 Surface lipoprotein 93

Type IV pili 16 Adhesin, transformation, biofilm formation 116

Lipooligosaccharide 2.5-4 Detoxified form is potential vaccine antigen 96, 97, 117, 118

aReferences from July 2011 to June 2015.
bNewly identified vaccine antigen from previous report.
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There are ongoing needs for vaccines that specifically

target NTHi and M catarrhalis–induced OM due to the

shifting microbiology of OM after broad use of PCVs.

Additional important research goals include better integra-

tion of our understanding of those aspects of the microbiol-

ogy of the nasopharynx and OM that could confound

clinical trial outcomes, such as the culture-negative status of

middle ear fluids despite robust biofilms and the potential

presence of H haemolyticus in the nasopharynx; and the

need for more sophisticated testing after delivery of an

NTHi vaccine antigen to detect loss of cells that express

that antigen (instead of just 1/2 scoring) to better gauge

the effectiveness of the immunization on nasopharyngeal

colonization (and more akin to current methods to demon-

strate the loss of vaccine serotypes of the pneumococcus

after delivery of whatever valent PCV is being used).

Critical Future Research Objectives

1. Identification of correlates of protection for AOM.

2. Urgent need to move several already well-

characterized candidate vaccine antigens from animal

studies to human trials.

3. Further development of alternative vaccination deliv-

ery methods, including maternal immunization.

4. Testing of M catarrhalis vaccine candidates in

novel animal models.

5. Continued development of noncapsular vaccine

antigens for pneumococcal OM.

6. Identification and characterization of additional

candidate vaccine antigens of bacterial and viral

OM pathogens.
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