247 research outputs found

    Thyrotrophin and thyroxine support immune homeostasis in humans

    Get PDF
    The endocrine and the immune systems interact by sharing receptors for hormones and cytokines, cross-control and feedback mechanisms. To date, no comprehensive study has assessed the impact of thyroid hormones on immune homeostasis. By studying immune phenotype (cell populations, antibody concentrations, circulating cytokines, adipokines and acute-phase proteins, monocyte-platelet interactions and cytokine production capacity) in two large independent cohorts of healthy volunteers of Western European descent from the Human Functional Genomics Project (500FG and 300BCG cohorts), we identified a crucial role of the thyroid hormone thyroxin (T4) and thyroid-stimulating hormone (TSH) on the homeostasis of lymphocyte populations. TSH concentrations were strongly associated with multiple populations of both effector and regulatory T cells, whereas B-cell populations were significantly associated with free T4 (fT4). In contrast, fT4 and TSH had little impact on myeloid cell populations and cytokine production capacity. Mendelian randomization further supported the role of fT4 for lymphocyte homeostasis. Subsequently, using a genomics approach, we identified genetic variants that influence both fT4 and TSH concentrations and immune responses, and gene set enrichment pathway analysis showed enrichment of fT4-affected gene expression in B-cell function pathways, including the CD40 pathway, further supporting the importance of fT4 in the regulation of B-cell function. In conclusion, we show that thyroid function controls the homeostasis of the lymphoid cell compartment. These findings improve our understanding of the immune responses and open the door for exploring and understanding the role of thyroid hormones in the lymphocyte function during disease

    An integrative genomics approach identifies KDM4 as a modulator of trained immunity

    Get PDF
    Innate immune cells are able to build memory characteristics via a process termed trained immunity. Host factors that influence the magnitude of the individual trained immunity response remain largely unknown. Using an integrative genomics approach, our study aimed to prioritize and understand the role of specific genes in trained immunity responses. In vitro-induced trained immunity responses were assessed in two independent population-based cohorts of healthy individuals, the 300 Bacillus Calmette-Guérin (300BCG; n = 267) and 200 Functional Genomics (200FG; n = 110) cohorts from the Human Functional Genomics Project. Genetic loci that influence cytokine responses upon trained immunity were identified by conducting a meta-analysis of QTLs identified in the 300BCG and 200FG cohorts. From the identified QTL loci, we functionally validated the role of PI3K-Akt signaling pathway and two genes that belong to the family of Siglec receptors (Siglec-5 and Siglec-14). Furthermore, we identified the H3K9 histone demethylases of the KDM4 family as major regulators of trained immunity responses. These data pinpoint an important role of metabolic and epigenetic processes in the regulation of trained immunity responses, and these findings may open new avenues for vaccine design and therapeutic interventions.</p

    A modular approach toward producing nanotherapeutics targeting the innate immune system.

    Get PDF
    Immunotherapies controlling the adaptive immune system are firmly established, but regulating the innate immune system remains much less explored. The intrinsic interactions between nanoparticles and phagocytic myeloid cells make these materials especially suited for engaging the innate immune system. However, developing nanotherapeutics is an elaborate process. Here, we demonstrate a modular approach that facilitates efficiently incorporating a broad variety of drugs in a nanobiologic platform. Using a microfluidic formulation strategy, we produced apolipoprotein A1-based nanobiologics with favorable innate immune system-engaging properties as evaluated by in vivo screening. Subsequently, rapamycin and three small-molecule inhibitors were derivatized with lipophilic promoieties, ensuring their seamless incorporation and efficient retention in nanobiologics. A short regimen of intravenously administered rapamycin-loaded nanobiologics (mTORi-NBs) significantly prolonged allograft survival in a heart transplantation mouse model. Last, we studied mTORi-NB biodistribution in nonhuman primates by PET/MR imaging and evaluated its safety, paving the way for clinical translation.This work was supported by NIH grants R01 CA220234, R01 HL144072, P01 HL131478, and NWO/ZonMW Vici 91818622 (to W.J.M.M.); R01 HL143814 and P01HL131478 (to Z.A.F.); R01 AI139623 (to J.O.); and P30 CA008748 (to T.R.). M.M.T.v.L. was supported by the American Heart Association (grant 19PRE34380423). M.G.N. was supported by a Spinoza grant from the Netherlands Organization for Scientific Research and an ERC Advanced Grant (no. 833247); L.A.B.J. was supported by a Competitiveness Operational Programme grant of the Romanian Ministry of European Funds (P_37_762, MySMIS 103587).S

    The Genetic Risk for COVID-19 Severity Is Associated With Defective Immune Responses

    Get PDF
    Recent genome-wide association studies (GWASs) of COVID-19 patients of European ancestry have identified genetic loci significantly associated with disease severity. Here, we employed the detailed clinical, immunological and multi-omics dataset of the Human Functional Genomics Project (HFGP) to explore the physiological significance of the host genetic variants that influence susceptibility to severe COVID-19. A genomics investigation intersected with functional characterization of individuals with high genetic risk for severe COVID-19 susceptibility identified several major patterns: i. a large impact of genetically determined innate immune responses in COVID-19, with ii. increased susceptibility for severe disease in individuals with defective cytokine production; iii. genetic susceptibility related to ABO blood groups is probably mediated through the von Willebrand factor (VWF) and endothelial dysfunction. We further validated these identified associations at transcript and protein levels by using independent disease cohorts. These insights allow a physiological understanding of genetic susceptibility to severe COVID-19, and indicate pathways that could be targeted for prevention and therapy

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
    corecore