1,275 research outputs found

    CFTR activity is enhanced by the novel corrector GLPG2222, given with and without ivacaftor in two randomized trials

    Get PDF
    Background Several treatment approaches in cystic fibrosis (CF) aim to correct CF transmembrane conductance regulator (CFTR) function; the efficacy of each approach is dependent on the mutation(s) present. A need remains for more effective treatments to correct functional deficits caused by the F508del mutation. Methods Two placebo-controlled, phase 2a studies evaluated GLPG2222, given orally once daily for 29 days, in subjects homozygous for F508del (FLAMINGO) or heterozygous for F508del and a gating mutation, receiving ivacaftor (ALBATROSS). The primary objective of both studies was to assess safety and tolerability. Secondary objectives included assessment of pharmacokinetics, and of the effect of GLPG2222 on sweat chloride concentrations, pulmonary function and respiratory symptoms. Results Fifty-nine and 37 subjects were enrolled into FLAMINGO and ALBATROSS, respectively. Treatment-related treatment-emergent adverse events (TEAEs) were reported by 29.2% (14/48) of subjects in FLAMINGO and 40.0% (12/30) in ALBATROSS; most were mild to moderate in severity and comprised primarily respiratory, gastrointestinal, and infection events. There were no deaths or discontinuations due to TEAEs. Dose-dependent decreases in sweat chloride concentrations were seen in GLPG2222-treated subjects (maximum decrease in FLAMINGO: –17.6 mmol/L [GLPG2222 200 mg], p < 0.0001; ALBATROSS: –7.4 mmol/L [GLPG2222 300 mg], p < 0.05). No significant effects on pulmonary function or respiratory symptoms were reported. Plasma GLPG2222 concentrations in CF subjects were consistent with previous studies in healthy volunteers and CF subjects. Conclusions GLPG2222 was well tolerated. Sweat chloride reductions support on-target enhancement of CFTR activity in subjects with F508del mutation(s). Significant improvements in clinical endpoints were not demonstrated. Observed safety results support further evaluation of GLPG2222, including in combination with other CFTR modulators. Funding Galapagos NV. Clinical trial registration numbers FLAMINGO, NCT03119649; ALBATROSS, NCT0304552

    Application of Simple Smart Logic for Waterflooding Reservoir Management

    Get PDF
    A simple smart logic for controlling inflow control valves (ICV) in waterflooding reservoir management is implemented and analyzed, with the final objective of improving the long term financial return of a petroleum reservoir. Such a control is based in a reactive simple logic that responds to the watercut measured in the ICV. Basically, when the watercut increases, the ICV is set to close proportionally. For comparison purposes, four strategies are presented: base case scenario with conventional control, the best completion configuration found by trial-and-error, the reactive control, and a deterministic optimal control based on Nonlinear Gradient Method with adjoint-gradient formulation is shown for comparison purposes. Finally, all four strategies are tested again in different reservoir realizations in order to mimic the geological uncertainties. Two different synthetic reservoir models were studied. First, a simple cube with a five-spot well configuration, in which the permeability field has a horizontal pattern defined by lognormal distributions. The second model is a benchmark proposed by the Dutch university, TU delft, with 101 channelized permeability fields representing river patterns. For the first model, no significant relative gain is found neither in the variable control nor in the optimal control. Manly because of the high homogeneity of the reservoir models. Therefore, no intelligent completion is recommended. On the other hand, for the second and more complex case, the results indicate an expressive relative gain in the use of simple reactive logic. Besides, this type of control achieves results nearly as good as the optimal control. The test in different realizations, however, shows that reservoir characterization is still a key part of any attempt to improve production. Although the variable reactive control is semi-independent, with action being taken based on measurements, some parameters need a priori model to be tuned

    Study protocol for a randomized controlled trial : prophylactic swallowing exercises in head-and-neck cancer patients treated with (chemo)radiotherapy (PRESTO trial)

    Get PDF
    Background: Dysphagia is a common and serious complication after (chemo)radiotherapy (CRT) for head-and-neck cancer (HNC) patients. Prophylactic swallowing exercises (PSE) can have a significantly positive effect on post-treatment swallowing function. However, low adherence rates are a key issue in undermining this positive effect. This current randomized trial will investigate the effect of adherence-improving measures on patients' swallowing function, adherence and quality of life (QOL). Methods: This ongoing trial will explore the difference in adherence and swallowing-related outcome variables during and after PSE in HNC patients performing the same therapy schedule, receiving different delivery methods. One hundred and fifty patients treated in various hospitals will be divided into three groups. Group 1 performs PSE at home, group 2 practices at home with continuous counseling through an app and group 3 receives face-to-face therapy by a speech and language pathologist. The exercises consist of tongue-strengthening exercises and chin-tuck against resistance with effortful swallow. The Iowa Oral Performance Instrument and the Swallowing Exercise Aid are used for practicing. Patients are evaluated before, during and after treatment by means of strength measurements, swallowing and QOL questionnaires. Discussion: Since low adherence rates undermine the positive impact of PSE on post-treatment swallowing function, there is need to develop an efficient PSE protocol maximizing adherence rates

    Synthetic Amorphous Silicon Dioxide (NM-200, NM-201, NM-202, NM-203, NM-204): Characterisation and Physico-Chemical Properties

    Get PDF
    The European Commission's Joint Research Centre (JRC) provides scientific support to European Union policy including nanotechnology. Within this context, the JRC launched, in February 2011, a repository for Representative Test Materials (RTMs), based on preparatory work started in 2008. It supports both EU and international research projects, and especially the OECD Working Party on Manufactured Nanomaterials (WPMN). The WPMN leads an exploratory testing programme "Testing a Representative set of Manufactured Nanomaterials" for the development and collection of data on characterisation, toxicological and ecotoxicological properties, as well as risk assessment and safety evaluation of nanomaterials. The purpose is to understand the applicability of the OECD Test Guidelines for the testing of nanomaterials as well as end-points relevant for such materials. The Repository responds to a need for nanosafety research purposes: availability of nanomaterial from a single production batch to enhance the comparability of results between different research laboratories and projects. The availability of representative nanomaterials to the international scientific community furthermore enhances and enables development of safe materials and products. The present report presents the physico-chemical characterisation of the synthetic amorphous silicon dioxide (SiO2, SAS) from the JRC repository: NM-200, NM-201, NM-202, NM-203 and NM-204. NM-200 was selected as principal material for the OECD test programme "Testing a representative set of manufactured nanomaterials". NM-200, NM-201 and NM-204 (precipitated SAS) are produced via the precipitation process, whereas NM-202 and NM-203 (fumed or pyrogenic SAS) are produced via a high temperature process. Each of these NMs originates from one respective batch of commercially manufactured SAS. They are nanostructured, i.e. they consist of aggregated primary particles. The SAS NMs may be used as a representative material in the measurement and testing with regard to hazard identification, risk and exposure assessment studies. The results for more than 15 endpoints are addressed in the present report, including physical-chemical properties, such as size and size distribution, crystallite size and electron microscopy images. Sample and test item preparation procedures are addressed. The results are based on studies by several European laboratories participating to the NANOGENOTOX Joint Action, as well as the JRC.JRC.I.4-Nanobioscience

    Multi-walled Carbon Nanotubes, NM-400, NM-401, NM-402, NM-403: Characterisation and Physico-Chemical Properties

    Get PDF
    In 2011 the JRC launched a Repository for Representative Test Materials that supports both EU and international research projects, and especially the OECD Working Party on Manufactured Nanomaterials' (WPMN) exploratory testing programme "Testing a Representative set of Manufactured Nanomaterials" for the development and collection of data on characterisation, toxicological and ecotoxicological properties, as well as risk assessment and safety evaluation of nanomaterials. The JRC Repository responds to a need for availability of nanomaterial from a single production batch to enhance the comparability of results between different research laboratories and projects. The present report presents the physico-chemical characterisation of the multi-walled carbon nanotubes (MWCNT) from the JRC Repository: NM-400, NM-401, NM-402 and NM-403. NM-400 was selected as principal material for the OECD WPMN testing programme. They are produced by catalytic chemical vapour deposition. Each of these NMs originates from one respective batch of commercially manufactured MWCNT. They are nanostructured, i.e. they consist of more than one graphene layer stacked on each other and rolled together as concentric tubes. The MWCNT NMs may be used as a representative material in the measurement and testing with regard to hazard identification, risk and exposure assessment studies. The results are based on studies by several European laboratories participating to the NANOGENOTOX Joint Action.JRC.I.4-Nanobioscience

    Titanium Dioxide, NM-100, NM-101, NM-102, NM-103, NM-104, NM-105: Characterisation and Physico-Chemical Properties

    Get PDF
    The European Commission's Joint Research Centre (JRC) provides scientific support to European Union policy including nanotechnology. Within this context, the JRC launched, in February 2011, a repository for Representative Test Materials (RTMs), based on preparatory work started in 2008. It supports both EU and international research projects, and especially the OECD Working Party on Manufactured Nanomaterials (WPMN). The WPMN leads an exploratory testing programme "Testing a Representative set of Manufactured Nanomaterials" for the development and collection of data on characterisation, toxicological and ecotoxicological properties, as well as risk assessment and safety evaluation of nanomaterials. The purpose is to understand the applicability of the OECD Test Guidelines for the testing of nanomaterials as well as end-points relevant for such materials. The Repository responds to a need for nanosafety research purposes: availability of nanomaterial from a single production batch to enhance the comparability of results between different research laboratories and projects. The availability of representative nanomaterials to the international scientific community furthermore enhances and enables development of safe materials and products. The present report presents the physico-chemical characterisation of the Titanium dioxide series from the JRC repository: NM-100, NM-101, NM-102, NM-103, NM-104 and NM-105. NM-105 was selected as principal material for the OECD test programme "Testing a representative set of manufactured nanomaterials". NM-100 is included in the series as a bulk comparator. Each of these NMs originates from one batch of commercially manufactured TiO2. The TiO2 NMs may be used as representative material in the measurement and testing with regard to hazard identification, risk and exposure assessment studies. The results for more than 15 endpoints are addressed in the present report, including physico-chemical properties, such as size and size distribution, crystallite size and electron microscopy images. Sample and test item preparation procedures are addressed. The results are based on studies by several European laboratories participating to the NANOGENOTOX Joint Action, as well as by the JRC.JRC.I.4-Nanobioscience

    EuReCa ONE—27 Nations, ONE Europe, ONE Registry A prospective one month analysis of out-of-hospital cardiac arrest outcomes in 27 countries in Europe

    Get PDF
    AbstractIntroductionThe aim of the EuReCa ONE study was to determine the incidence, process, and outcome for out of hospital cardiac arrest (OHCA) throughout Europe.MethodsThis was an international, prospective, multi-centre one-month study. Patients who suffered an OHCA during October 2014 who were attended and/or treated by an Emergency Medical Service (EMS) were eligible for inclusion in the study. Data were extracted from national, regional or local registries.ResultsData on 10,682 confirmed OHCAs from 248 regions in 27 countries, covering an estimated population of 174 million. In 7146 (66%) cases, CPR was started by a bystander or by the EMS. The incidence of CPR attempts ranged from 19.0 to 104.0 per 100,000 population per year. 1735 had ROSC on arrival at hospital (25.2%), Overall, 662/6414 (10.3%) in all cases with CPR attempted survived for at least 30 days or to hospital discharge.ConclusionThe results of EuReCa ONE highlight that OHCA is still a major public health problem accounting for a substantial number of deaths in Europe.EuReCa ONE very clearly demonstrates marked differences in the processes for data collection and reported outcomes following OHCA all over Europe. Using these data and analyses, different countries, regions, systems, and concepts can benchmark themselves and may learn from each other to further improve survival following one of our major health care events

    Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV

    Get PDF
    Abstract The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (d̂ t) and chromomagnetic (μ̂ t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb−1. The linearized variable AFB(1) is used to approximate the asymmetry. Candidate t t ¯ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for t t ¯ final states. The values found for the parameters are AFB(1)=0.048−0.087+0.095(stat)−0.029+0.020(syst),μ̂t=−0.024−0.009+0.013(stat)−0.011+0.016(syst), and a limit is placed on the magnitude of | d̂ t| &lt; 0.03 at 95% confidence level. [Figure not available: see fulltext.

    Measurement of nuclear modification factors of gamma(1S)), gamma(2S), and gamma(3S) mesons in PbPb collisions at root s(NN)=5.02 TeV

    Get PDF
    The cross sections for ϒ(1S), ϒ(2S), and ϒ(3S) production in lead-lead (PbPb) and proton-proton (pp) collisions at √sNN = 5.02 TeV have been measured using the CMS detector at the LHC. The nuclear modification factors, RAA, derived from the PbPb-to-pp ratio of yields for each state, are studied as functions of meson rapidity and transverse momentum, as well as PbPb collision centrality. The yields of all three states are found to be significantly suppressed, and compatible with a sequential ordering of the suppression, RAA(ϒ(1S)) > RAA(ϒ(2S)) > RAA(ϒ(3S)). The suppression of ϒ(1S) is larger than that seen at √sNN = 2.76 TeV, although the two are compatible within uncertainties. The upper limit on the RAA of ϒ(3S) integrated over pT, rapidity and centrality is 0.096 at 95% confidence level, which is the strongest suppression observed for a quarkonium state in heavy ion collisions to date. © 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.Peer reviewe
    corecore